Skip to main content


Colloquia are held on Thursdays at 4pm in room 4327 (building 4) of the Stevenson Science Center unless otherwise noted. Click here for directions, or phone the department. A reception with the speaker is held at 3:30pm in Stevenson 6333.

Show all abstracts Hide all abstracts

Fall 2018

Thursday August 30th 2018 4:00 PM

Mahmoud Parvizi, Department of Physics and Astronomy, Vanderbilt University

See One, Do One, Teach One: Graduate Physics Preparation and Conditioning via Adult Learning Principles   (show abstract)

A student's advance from an undergraduate to a graduate physics program generally includes a subtle, yet often challenging, transition from the standard pedagogical approach of undergraduate studies to the andragogy intrinsic to graduate physics, i.e. trading the techniques of rote memorization and the Socratic method for self-directed and self-contained practices of adult learners. In this talk, a senior physics graduate student and core course tutor reviews his experience with both the traditional and nontraditional path through the physics pipeline in order to discuss hard-won lessons from his transition that remain applicable at all phases. The aim is to align these lessons with adult learning principles and impart a practical adaptation of Halsted's famous See One, Do One, Teach One" model, developed to prepare students in surgical residency programs, to one that prepares and conditions graduate students for core physics coursework requirements.

Host:S. Hutson

Wednesday September 5th 2018 4:00 PM


Christopher White, Illinois Institute of Technology

A Brief History of Neutrino Physics, with an Emphasis on the Search for Sterile Neutrinos using the PROSPECT Experiment.   (show abstract)

While much has been learned about neutrinos in the 80 years since they were first postulated to exist, many mysteries (experimental anomalies) remain. One of the open questions is whether additional neutrino species exist, specifically, a type of neutrino referred to as "sterile”. In this talk, I will provide a brief history of neutrino physics, followed by results and puzzles from recent neutrino experiments, and conclude with a description of the PROSPECT experiment. PROSPECT is a multi-phased short-baseline reactor antineutrino experiment located at the High Flux Isotope Reactor at Oak Ridge National Laboratory with a primary goal of performing a search for sterile neutrinos.

Host:P. Sheldon

Thursday September 13th 2018 4:00 PM


Brad Roth, Department of Physics, Oakland University

The Physics of Mechanotransduction: How Biological Tissue Responds to Mechanical Forces   (show abstract)

Mechanotransduction is the mechanism by which mechanical forces cause biological tissue to grow and remodel. Mechanotransduction can arise from the coupling of the intracellular cytoskeleton to the extracellular matrix by integrin proteins in the cell membrane. A complete description of mechanotransduction requires this idea be expressed using a mathematical model. The mechanical bidomain model treats tissue as a macroscopic continuum, yet accounts for microscopic forces acting on integrins. The model’s central hypothesis is that forces on integrins arise from differences between intracellular and extracellular displacements. This model provides a different view of mechanotransduction than do traditional biomechanics models that do not differentiate between the intra- and extracellular spaces and do not predict forces on integrins. In this talk, I will introduce the bidomain model and use it to interpret experimental data. The model describes the growth of engineered tissue, the remodeling of cardiac tissue around a region of ischemia in the heart, and the differentiation of stem cells in growing cell colonies. This model may impact fields as diverse as development, wound healing, and tumor growth. It is an example of how a simple model grounded in fundamental physics can provide new insights into biological phenomena.

Host:J. Wikswo

Thursday September 20th 2018 4:00 PM

Michael McCracken, Washington and Jefferson College

Repackaging the physics major for inclusion   (show abstract)

Data recently presented by the American Institute of Physics suggest that though undergraduate and graduate programs have made some gains in attracting and promoting students from under-represented minorities, the significant gap in representation remains. In response, the Physics Department at Washington and Jefferson College has spent the last five years on a comprehensive repackaging of its curriculum to meet the expectations, needs, and preparations of students from a variety of backgrounds. I will present the motivation and framework for these changes, which are characterized by an increased emphasis on experiential learning, development of professional skills, and promotion of invisible dimensions of student diversity. The largest revisions appear in the second-year courses, emphasizing technical writing and scientific computation. I will also describe several shifts in departmental culture that have attended this curriculum review, and present preliminary enrollment and outcome results.

Host:S. Starko

Thursday September 27th 2018 4:00 PM

Kenneth Brown, Duke University

Quantum Computation with Trapped Ions   (show abstract)

Quantum computers promise to solve certain mathematical and scientific problems exponentially faster than standard computers. The challenge is building a device that is sufficiently well-controlled to achieve this goal. In this talk, I will describe the basics of ion trap quantum computation and the prospects for constructing an error corrected qubit from trapped ions.

Host:K. Holley-Bockelmann

Thursday October 4th 2018 4:00 PM

Chong-Yu Ruan, Department of Physics and Astronomy, Michigan State University

Imaging thermal and quantum phase transitions with femtosecond coherent electron beams   (show abstract)

The self-organization of matters close to a critical point of a continuous phase transition is relatively well understood at near equilibrium conditions. Studying the non-statistical responses of matters driven towards a thermal or quantum phase transition is an outstanding problem. Such problem has implications in the evolution towards quark-gluon plasma following big bang in the early universe and in the heavy-ion collision experiments. The associated nonequilibrium processes could also be directly responsible for the creation of hidden phases discovered recently in several quantum materials. We show that with femtosecond coherent electron pulses created with a new type of ultrafast electron microscope, we can image the macroscopic thermal and interaction-driven phase transitions of correlated electron phases where the dynamical scale-invariant behavior signifies the presence of nonthermal critical points on the excited energy landscape. Such new light-induced critical phenomena provide an alternative platform for studying nonequilibrium many-body quantum physics besides the so elegantly demonstrated recent cold-atom quantum microscopy experiments in a similar context. We will discuss several nontrivial non-statistical physical processes thus obtained, involving prethermalization, noncollinear symmetry breaking, and the formation of novel topological phases in 2D quantum materials with technological implications.

Hosts:N. Tolk and K. Varga

Thursday October 11th 2018 4:00 PM

Qi Zhang, Argonne National Laboratory

Exploring quantum optics and spintronics with terahertz light   (show abstract)

As the last frontier of the electromagnetic spectrum, terahertz (THz, 1012Hz) radiation becomes an emergent powerful tool in probing various collective excitations in condensed matter systems. Novel light-matter interaction properties in the THz range make it possible to realize unconventional quantum optics phenomena. Meanwhile, by probing the spin and charge dynamics down to sub-ps time scale, THz spectroscopy also provides valuable insights on ultrafast spintronics. In this talk, we will introduce our recent progress in applying THz spectroscopy to quantum optics and spintronics studies of two-dimensional (2D) systems. First, we will demonstrate the collective Rabi splitting with 2D Landau polaritons inside terahertz cavities. We achieved ultrastrong light-matter interaction between Landau level transitions and THz cavity photons. Large vacuum Bloch Siegert shift is unambiguously observed. In the second part, we utilized THz emission spectroscopy to demonstrate and further control sub-ps spin-charge conversion processes at various 2D spintronic interfaces. Its application will be discussed.

Host:Y Xu

Thursday October 18th 2018 4:00 PM

Fall Break

Thursday October 25th 2018 4:00 PM


Paul Corkum, University of Ottawa and National Research Council of Canada

Attosecond pulses generated in gases and solids   (show abstract)

Attosecond pulses are generated by electrons that are extracted from a quantum system by an intense light pulse and travel through the continuum under the influence of the electric field of the light. Portions of each electron wave packet are forced to re-collide with its parent ion after the field reverses direction. Upon re-collision, the electron and ion can recombine, emitting soft X-ray radiation that can be in the form of attosecond pulses. This highly nonlinear process occurs in atoms, molecules and solids and offers unique measurement opportunities – for measuring the attosecond pulse itself; the orbital(s) from which it emerged; and the band structure of material in which the wave packets moved.

Host: K. Varga

Thursday November 1st 2018 4:00 PM

Kandice Tanner, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health

Probing the role of tissue biophysics in metastasis   (show abstract)

Tumor latency and dormancy are obstacles in effective treatment of cancer. In the event of metastastic disease, emergence of a lesion can occur at varying intervals from diagnosis and in some cases following successful treatment of the primary tumor. Genetic factors that drive metastatic progression have been identified, such as those involved in cell adhesion, signaling, extravasation and metabolism. Is there a difference in strategy to facilitate outgrowth? Why is there a difference in latency? One missing cue may be the role of tissue biophysics of the organ microenvironment on the infiltrated cells. Here, I discuss optical tweezer based active microrheology in efforts to study the mechanical cues that may influence disseminated tumor cells in different organ microenvironments. I further discuss in vitro and in vivo preclinical models such as 3D culture systems and zebrafish in efforts of understanding the earliest stage of organ colonization.

Host:S. Hutson

Thursday November 8th 2018 4:00 PM

Stanislav Y. Shvartsman, Department of Molecular Biology, Princeton University

Collective dynamics of growing cell trees   (show abstract)

Clusters of cells connected by stable intercellular cytoplasmic bridges played a key role during the emergence of multicellularity and continue to serve critical functions in present day organisms. Our research uses Drosophila egg development as an experimental model that provides unmatched opportunities for quantitative studies of this important class of multicellular systems. Drosophila oogenesis relies on two types of cell clusters with stable cytoplasmic bridges: a germline-derived cluster containing the future oocyte and 15 nurse cells, and somatic cell clusters in the epithelium that envelops the germline cluster. We identified collective dynamics in both of these clusters. First, we discovered that cells in the germline cluster grow in groups defined by the cluster’s connectivity. Second, we showed that somatic cell clusters display strong clonal dominance, a commonly observed, yet poorly understood effect during developmental tissue growth. Our experimental and theoretical studies suggests that both of these effects may be described using mathematical models that take the form of dynamical systems on tree-like networks.

Host: W. Holmes

Thursday November 15th 2018 4:00 PM

Jamie Nagle, Department of Physics, University of Colorado

Pushing out of our comfort zone for quark-gluon plasma formation   (show abstract)

The quark-gluon plasma is a high temperature (> a trillion Kelvin) state of matter where quarks and gluons are no longer confined inside hadrons. This plasma is studied in the laboratory via nuclear collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider, and displays some remarkable properties including near perfect fluidity. Recent experiments have revealed similar fluidity signatures in collisions of small systems, including proton-proton and proton/deuteron/helium-nucleus reactions. These challenge our understanding of the requirements necessary for plasma formation and the applicability of hydrodynamic modeling.

Host:J. Velkovska

Thursday November 22nd 2018 4:00 PM


Thursday November 29th 2018 4:00 PM

Gianmarco Pinton, University of North Carolina at Chapel Hill, and North Carolina State University

Ultrasound imaging and nonlinear propagation: applications to traumatic brain injury and super-resolution   (show abstract)

The soft tissue of the human body supports both fast acoustic waves (1540 m/s) and slow shear waves (2 m/s). At large amplitudes these waves exhibit nonlinear behavior, such as harmonic development and shock formation. We develop models and simulation tools that describe the physics of nonlinear acoustic propagation, attenuation, and scattering in highly realistic representations of the human body. We use these models to develop new ultrasound imaging methods. For example, to understand brain motion during the rapid events associated with traumatic injury, we have developed a new high frame-rate (10,000 images/second) imaging technique that meaures image brain motion down to the micron level. By interrogating this spatio-temporal regime, we have discovered that destructive shear shock waves form and propagate deep inside the brain. High ultrasound frame-rates, in combination with micro-bubble contrast agents, can also be used to generate super-resolved images. We demonstrate how this technique can image vessels as small as 200 microns transcranially at a depth of several centimeters and how blood velocity can be mapped within these microvessels.

Host:S. Hutson

Thursday December 6th 2018 4:00 PM

Stephen Leone, Departments of Chemistry and Physics and Lawrence Berkeley National Laboratory

Attosecond Probing of Core-Level Dynamics in Solids   (show abstract)

A new method of probing solid-state materials involves laser pump-probe measurements with extreme ultraviolet attosecond light pulses, which interrogate core level transitions. The simple act of charge transfer from one atom to another or excitation of the band gap in a solid unveils many fundamental aspects to be explored, in the quest to measure ever-shorter time processes. These include the extremely fast processes of core-level screening and broadening, coherences, and scattering, as well as electron configuration rearrangements. Examples in this presentation include charge transfer in metal oxides, core-level excitons in 2D metal dichalcogenides, insulator-to-metal transitions, and strong-field induced Floquet Bloch bands. Lifetimes, scattering, and electronic coherences, as well as theoretical comparisons, will be discussed. Coherent dynamics measurements in the extreme ultraviolet provide a novel and powerful probe for nonequilibrium states of matter.

Host: K. Varga

Spring 2019

Thursday January 10th 2019 4:00 PM

Sohrab Ismail-Beigi, Department of Applied Physics, Physics, and Mechanical Engineering and Materials Science, Yale University

Two examples of picoscale materials engineering in transition metal oxides   (show abstract)

The atomic-scale structure and the bonding topology in a material determines its resulting physical properties. Alterable or reversible bond distortions at the picometer length scale in turn modify a material’s electronic configuration and can create interesting physical and functional properties. Picoscale bond perturbations represent the ultimate length scale for materials engineering:* any smaller, and the effects are too small to matter; any larger, and the bonds are completely broken so one is describing a different material. I will describe, using first principles theory together with parallel experimental results from my Yale collaborators, two examples where we can understand and/or design picoscale distortions in 3d transition metal oxides in order to control electron transport or relative orbital energies and occupancies. The first system is an oxide/oxide ferroelectric mobility-effect device (not field effect), while the second is an artificially designed oxide superlattice that achieves strong orbital polarization and strong antiferromagnetic inter-layer coupling. * Ismail-Beigi, Walker, Disa, Rabe, and Ahn, “Picoscale materials engineering,” Nature Reviews Materials 2, 17060 (2017).

Host:S. Pantelides

Thursday January 17th 2019 4:00 PM

Piran R. Kidambi, Department of Chemical and Biomolecular Engineering, Vanderbilt University

Atomically thin membranes and barriers from 2D materials   (show abstract)

Atomically thin 2D materials have been extensively researched for electronic applications and synthesis efforts have focused on minimizing defects and obtaining larger single crystals. However, 2D materials offer transformative opportunities as ultra-thin barriers and membranes for molecular separations. Pristine graphene and h-BN are impermeable to species larger than protons but the introduction of nanoscale defects in the 2D material lattice allows for the creation of size-selective nanoporous atomically thin membranes. Here, I will discuss advances in 2D material synthesis and integration/processing routes to realize i) large-area atomically thin gas barriers, ii) fully functional nanoporous atomically thin membranes for dialysis based molecular separations, iii) novel approaches for in-situ growth of nanopores in 2D materials, and iv) the development of methods to probe sub-nanometer to nanometer defects over centimeter scale single crystalline 2D materials. Specifically, I will focus on the role of defects and associated engineering challenges with quality and scalability for electronics vs membrane applications.

Host:S. Hutson

Thursday January 24th 2019 4:00 PM



Thursday January 31st 2019 4:00 PM



Thursday February 7th 2019 4:00 PM



Thursday February 14th 2019 4:00 PM


Thursday February 21st 2019 4:00 PM

Michael Levin, Tufts University

Host:J. Wikswo

Thursday February 28th 2019 4:00 PM

Scott Gaudi, Ohio State University


Host:R. Scherrer

Thursday March 7th 2019 4:00 PM

Spring Holidays

Thursday March 14th 2019 4:00 PM

Zachary Manchester, Stanford University

Project Starshot

Host:R. Scherrer

Thursday March 21st 2019 4:00 PM

Steven Yalisove, University of Michigan

Ultrafast laser interactions with semiconductors

Host:R. Haglund

Thursday March 28th 2019 4:00 PM

Andrew Leifer, Princeton University

Host:J. Wikswo

Thursday April 4th 2019 4:00 PM


Barbara Jacak, UC Berkeley and LBNL

Host:J. Velkovska

Thursday April 11th 2019 4:00 PM

Professor Rafael Lopez-Mobilia, Department of Physics and Astronomy, The University of Texas at San Antonio

Hosts:L. Vega and R. Scherrer

Thursday April 18th 2019 4:00 PM

M. Peter Murrell, Yale University

Host:S. Hutson