Research Opportunities
Dive Deep. An extensive and impressive list of scientists work with the Program in Neuroscience. Our faculty specialize in a wide variety of disciplines, with most leading their own research labs. Neuroscience students have the unique opportunity to work directly with faculty who are accomplished experts in their respective fields—a truly one-of-a-kind experience.
Explore research labs that are accepting students for the current and upcoming semesters, and search the table below to find a faculty member whose work interests you.
Name | Contact | Research Description |
---|
Name | Contact | Research Description |
---|---|---|
Aboud, Katherine | Email | Neural Characterization of Reading Processes and the Treatment of Reading Disorders Katherine S. Aboud, Ph.D., is a Research Assistant Professor in Special Education at Vanderbilt University, and recipient of the NIH Director’s Early Independence Award (2021). Her research focuses on the neural characterization of reading processes and the treatment of reading disorders using multi-modal neuroimaging approaches and non-invasive brain stimulation. The goal of her research program is to characterize and enhance adult learning through high-definition, multimodal brain imaging and neuromodulation, with a specific focus on reading and related disorders. To accomplish this, she relies on her expertise in multimodal neuroimaging, neurocognitive models of reading and related disorders, and non-invasive brain stimulation. This unique convergence of expertise has resulted in the following primary arms of her research program: 1.) Individualized, high-definition (fused MRI-EEG) brain characterization of reading processes, 2.) Individualized, high-definition brain characterization of reading disorders, and 3.) Individualized, high-definition non-invasive brain stimulation to enhance learning from texts in populations with and without reading disorders. |
Abumrad, Naji | Email | Insulin Resistance in the Morbidly Obese Dr. Naji Abumrad’s clinical interests cover all aspects of general surgery and, particularly, endocrine surgery. His extensive research activities include studies of the mechanism of insulin resistance in the morbidly obese, and in particular, he is conducting studies related to the understanding of the mechanisms involved in the reversal of type 2 diabetes in morbidly obese patients who undergo bariatric surgical procedures. Additional studies carried out in his laboratory, address the metabolic effects of opioid peptides and opiate alkaloids; and in particular cocaine on energy metabolism and fuel mobilization. |
Acra, Sari | Email | Impact of Alterations in Caloric Energy Balance and Body Composition on Human Diseases As part of the team at the Energy Balance Lab at Vanderbilt University, Dr. Acra has been involved in the measurement of energy metabolism using whole-room indirect calorimeters (metabolic chambers). Such a system can be coupled with movement sensors to provide a similar-to-free-living environment where a study subject or patient’s energy expenditure, substrate oxidation, physical activities are accurately measured on a minute-by-minute basis. The lab is also investigating the physiological regulations of energy metabolism, as well as improving the technologies for measuring body composition and physical activity. These investigational and modeling tools have been used to study energy metabolism in several disease states, including obesity and sickle cell anemia. As part of the aerodigestive program, Dr. Acra is also conducting studies on dyspeptic disorders, including extra-esophgeal manifestations of gastroesophageal reflux disease, the effect of laryngomalacia on swallowing mechanics, and the role of anxiety in propagating esophageal inflammation. |
Ascano, Manuel | Email | Cellular Stress The Ascano laboratory is broadly interested in two areas of cellular stress: 1. The roles and coordination of RNA-binding proteins in regulating gene expression during cellular stress. 2. The cytosolic DNA-sensing pathway involving the sensor cGAS, its second messenger product cGAMP, and the endoplasmic reticulum-bound receptor STING. Our lab integrates novel biochemical, molecular and cell biological tools with high-throughput transcriptomic and proteomic technologies in an effort to elucidate the gene regulatory networks at play during cellular stress – and how such mechanisms might be manipulated for therapeutic intervention. The lab is affiliated with the Department of Biochemistry at the Vanderbilt University School of Medicine and is also part of the Immunology and Microbial Pathogenesis Programs within the Department of Pathology, Microbiology, and Immunology at VUMC. For more information, visit the lab website. |
Aune, Thomas | Email | Using Functional Genomic and Epigenetic Approaches to Understand Gene Regulation Our research focuses on the use of functional genomic and epigenetic approaches to understand gene regulation. Our interests range from detailed mechanistic studies of the interferon-gamma gene, a key cytokine produced by cells of the innate and adaptive immune system, to the use of these approaches to gain new insights into human disease. In addition, we have begun to focus our attention on long noncoding RNAs (lncRNAs) and other species of RNAs that do not code for proteins. We have developed computational and analytic pipelines to identify these RNA species and interrogate their functions in the immune system. This includes the recognition that multiple lncRNA species are transcribed from key genetic loci that confer risk for developing human inflammatory disease. For more information, please visit the lab website. |
Avery, Suzanne | Email | Hippocampal Network Changes and their Role in Psychopathology and Cognitive Impairments in Psychotic Disorders My research is focused on identifying how changes to the hippocampal network contribute to progression of psychopathology and cognitive impairments in psychotic disorders. I use systems and cognitive neuroscience approaches to study the brain and brain networks, as well as multiple levels of analysis, including neuroimaging (structural, activation, connectivity) and behavioral assessment (memory, attention, eye movement). Currently, we are conducting a study to examine how hippocampal microstructural integrity is altered in schizophrenia and how these alterations relate to individual differences in memory and functional outcomes. Through this work we aim to identify new ways to track and predict the progression of memory impairments in psychosis and their impact on clinical symptoms and function in daily life. |
Avison, Calum | Email | Molecular, Structural, and Functional Correlates of Altered Behaviors Associated with Obesity, Diabetes and Prenatal Drug Exposure We use molecular, structural and functional brain imaging methods in humans and animals to better understand: 1) how variations in the efficiency of signaling pathways (particularly insulin and dopamine) influence the performance of brain circuits, involved in reward, planning and self-control, and the effect of these variations on behavior. We currently focus on how these systems influence feeding behavior, and to what extent disrupted regulation of these circuits may predispose to and/or be influenced by obesity. 2) the impact of prenatal drug and/or alcohol exposure on structural and functional brain development. |
Ayala, Julio E. | Gut-Brain Interactions That Regulate Body Weight and Energy Homeostasis Research in the Ayala lab focuses on gut-brain interactions that regulate energy balance. Specifically, we are interested in identifying regions in the central nervous system and molecular mechanisms within those regions that mediate the effects of the gut hormone Glucagon-like peptide-1 (Glp1) and related Glp1 receptor (Glp1r) agonists on feeding behavior. Our lab combines transgenic mouse models, targeted pharmacological interventions and state-of-the-art metabolic phenotyping capabilities to address research questions. We aim to extend the technical expertise in the lab to leverage the existing imaging, circuit mapping, electrophysiology and behavioral phenotyping capabilities at Vanderbilt. Other projects in the lab focus on leveraging biochemical and pharmacological properties of the Glp1r towards the design of more effective therapeutics for obesity and diabetes. |
|
Bachorowski, Jo-Anne | Email | Production and Perception of Nonlinguistic Acoustic Cues Bachorowski’s research broadly concerns the production and perception of nonlinguistic acoustic cues, with attention given to social and other contextual influences on signal production as well as the impact of vocal acoustics on listener emotional responding. Towards these ends, empirical work variously involves studying laughter, vocal expression of emotion, indexical cueing in speech, and infant-directed speech. Despite the diversity of signals being studied, the work is anchored by two core themes: understanding the linkages between vocal acoustics and affect-related responding, and developing an empirically based approach to vocal signaling that is defensible from principles associated with the selfish-gene theory of evolution. Research methods used in this research include detailed analysis of vocal signals using state-of-the-art unix-based software, perceptual testing, and structural and functional imaging studies. Neuroscience students working in lab for research credit will be involved in acoustic analysis of vocal signals and will gain exposure to imaging techniques and analysis. These students will also be involved in data collection, which typically involves collecting audio-recordings of both children and college-aged adults participating in socially interactive paradigms. Depending on their interests, these students can also be highly involved in perceptual testing, including stimulus selection, subject testing, and data analysis. Some current questions of interest in perceptual work include listener responsive to various kinds of laugh sounds and listener judgments of talker body size from very short speech sounds. |
Bagnato, Francesca | Email | Use of MRI to Study Disease Processes in Multiple Sclerosis Our research focuses on the use of non-conventional quantitative magnetic resonance imaging (MRI) techniques to untangle disease processes in Multiple Sclerosis (MS). We use MRI at high and ultra-high field both in persons but also animals in which the model of the disease has been reproduced. In 2019 the National MS Society (NMSS) has funded our lab to study the role of chronic inflammation in persons with MS, at the time of disease diagnosis. Specifically, our team is using ultra high field (7.0 Tesla) MRI to detect paramagnetic rim lesions in newly diagnosed persons and understand if their presence so early in the disease course is associated with a less favorable clinical outcome. Paramagnetic rim lesions are chronic plaques associated with a slow expansion over time and are considered a surrogate of chronic inflammation in MS. In 2021 the VA Healthcare System has funded our lab to study neurodegeneration in early MS. We are using state-of-the art quantitative MRI methods to derive indirect estimates of myelin and axonal integrity and quantify the impact of neuroxonal injury early in the disease course. These methods include the selective inversion recovery quantitative magnetization transfer (SIR-qMT) and multi-compartment diffusion MRI with the spherical mean technique (SMT). In 2021 the National Institutes of Health (NIH) has funded our lab to further study the pathological sensitivity and specificity of our SIR-qMT and SMT to myelin and axonal injury using two mice models of MS. For more information, visit the lab website. |
Barajas, Matthew | ||
Bastarache, Julie A. | Email | Novel Approaches to Prevention and Treatment of Acute Respiratory Distress Syndrome (ARDS) and Sepsis The goal of my research program is to understand the pathophysiology of acute respiratory distress syndrome (ARDS) and sepsis and to uncover novel approaches to prevention and treatment of these devastating conditions. As a physician-scientist, my aim is to uncover novel mechanisms that contribute to the development of sepsis and ARDS with the ultimate goal of identifying new biologic targets and unique therapeutic approaches that can be translated to clinical practice. My lab has two major focus areas: the role of cell free-hemoglobin in modulating endothelial and lung epithelial permeability in sepsis and ARDS and the role of tissue factor, the initiator of the extrinsic coagulation cascade, in mediating lung epithelial injury and repair. I have experience with mouse models of acute lung injury as well as with modeling the epithelial barrier for in vitro study. I have developed several novel murine and cell culture model systems to study the function of TF in ALI. My research is translational and combines studies in cell culture, human and mouse experimental models, and human samples from patients with sepsis and ARDS. For more information, please visit the lab website. |
Bastos, Andre | Neural Mechanisms of Prediction Research in the Bastos laboratory uses sophisticated neuronal recordings, computational modeling, and optogenetics to unravel the neural mechanisms for how the brain builds predictions. Most of our sensory inputs and experiences are somewhat predictable. Therefore, by basing perception at least in part on prior predictions, the brain saves a great amount of processing power. These resources can then be dedicated to reacting to unpredicted parts of the environment when flexible behavior is necessary. We are investigating the role of distinct layers of cortex, neuronal cell types, and synchronous brain rhythms for generating predictions and updating them based on current experience. We are also pursuing which aspects of the neuronal code for prediction are carried by bottom-up or feedforward vs. top-down or feedback message passing between cortical and sub-cortical areas. The Bastos laboratory works with non-human primates (NHPs) performing cognitive tasks involving working memory and attention, while manipulating the predictability of different task elements. As NHPs perform these tasks, we use large-scale multi-laminar recordings to pinpoint the exact brain regions and cortical layers that are involved. We use advanced data analysis techniques to mine these rich data for insights which are then used to inform computational modeling. Closing the loop, we then use causal manipulation techniques such as optogenetics to perturb the ongoing neuronal dynamics. For more information, please visit the lab website. |
|
Bick, Sarah | Email | Neurophysiological Signaling in Cognitive and Emotional Processes Dr. Bick’s research focuses on uncovering neurophysiological signaling that underlies cognitive and emotional processes using intracranial recordings from human subjects. She studies the signals underlying memory and other cognitive processes. Better understanding of the neurophysiology of these processes allows for the development of new neuromodulation techniques for memory and psychiatric disorders. Her recent publications include: Vagus Nerve Stimulation Versus Responsive Neurostimulator System in Patients with Temporal Lobe Epilepsy, Stereotactic and Functional Neurosurgery; Caudate Stimulation Enhances Learning, Brain, A Journal Of Neurology; Preoperative MRI Findings Predict Diagnostic Utility of Foramen Ovale Electrodes, Journal of Neurosurgery. |
Blind, Raymond D. | Second Messenger Signaling in the Nucleus The Blind Lab explores second messenger signaling in the nucleus. Specifically, we seek discovery in the structure, function and signaling properties of nuclear inositide lipids and soluble inositol phosphates, asking how these molecules directly participate in controlling gene expression. We use genomics, structural biology and chemical genetics to query how nuclear second messengers operate. We then attempt to apply that information to develop drug discovery platforms, with potential to treat cancers and metabolic diseases. Nuclear lipid signaling is particularly interesting to us because the nucleus contains unique pools of lipids that do not exist in any known membrane structure, but are instead complexed with soluble proteins. We discovered certain pools of nuclear inositides can be directly remodeled by lipid signaling enzymes, with remarkable kinetic properties, providing a new framework to explain how nuclear lipid signaling works. Current research in our group is 1. determining what role phosphorylated inositols, phosphoinositide lipids and their signaling enzymes play in chromatin biology, 2. determining how nuclear phosphoinositide complexes are structured, 3. identifying rapid nuclear signaling events using chemical genetics, 4. understanding how nuclear receptors acquire phospholipid ligands from membranes. For more information, please visit the Blind Lab website. |
|
Bodfish, Jim | Email | Pathogenesis and Treatment of Autism Dr. Bodfish’s research focuses on the pathogenesis and treatment of autism. In particular, he focuses on severe and treatment-resistant forms of autism or what can be termed “autism plus.” Clinically, this includes complex presentations of autism such as behavior & mood problems, nonverbal / minimally verbal, cognitive deficits, sensory & motor disorders, and genetic conditions. The central questions in his research are: what are the objectively measureable characteristics of children with autism who demonstrate poor developmental outcomes, and what are the neuro-behavioral processes that underlie these adverse developmental trajectories? Bodfish is also a clinician and strives to maintain a close linkage of his research with autism clinical service-delivery programs. The Bodfish lab consists of an equal partnership of clinicians, and basic and applied researchers. They use a variety of behavioral neuroscience approaches and methods including: measurement of behavioral phenotypes and dense observational measurement of behavioral patterns (naturalistic objective behavioral observation & coding, micro-behavioral analysis, eye-tracking); measurement of sensory, motor, and affective function (sensory psychophysics, kinematics, pupilometry, facial action coding); measurement of peripheral (autonomic) and central (electrophsyiology, functional neuroimaging) nervous system function. Their translational work includes development of outcome measures, development of behavioral / psychosocial treatment procedures, and behavioral assays for drug discovery in preclinical (mouse) models. The short-term goal of their multi-method approach is to identify valid and reliable markers of the processes that may lead to the development of atypical behaviors that can adversely impact brain and behavioral development. The long-term goal of their research is to leverage models of pathogenesis to develop novel intervention approaches for autism. |
Bonfield, Christopher | Email | Neurosurgery Dr. Bonfield's clinical and research interests include pediatric neurosurgery, craniofacial surgery, spinal deformity/scoliosis correction, and international neurosurgery. |
Booth, James | Brain Learning and Development The mission of the brain development laboratory is to understand the mechanisms of learning and development. Our research focuses on academically relevant areas such as language, reading, math and scientific thinking. Our models of brain function are informed by our work in neurodiverse populations such as developmental language disorder, late talkers, learning disabilities, anxiety disorders and deaf and hard-of-hearing. By furthering our understanding of the brain bases of individual differences, our work has important implications for assessment and intervention. For more information, visit the lab website. |
|
Broadie, Kendal S. | Email | Nervous System Development What are the molecular mechanisms underlying coordinated movement, coordinated behavior, cognition, learning and memory? How does the nervous system circuitry underlying these behaviors develop, and how are these circuits modified by experience? How do these mechanisms go awry in inherited neurological diseases and age-related neurological decline? These questions center around the common themes of information transfer and information storage in cells of the nervous system. My long-term interest has been to understand the fundamental principles of nervous system development, function and plasticity by applying systematic genetic analyses to address these questions. My experimental organism, Drosophila melanogaster, has a long and distinguished history as a foremost forward genetic model of neurobiological mechanisms. The primary focus of my laboratory is on the synapse, the specialized intercellular junction which functions as the communication link between neurons. Chemical synapses mediate the vast majority of communication in the nervous system and exhibit plastic properties underlying the behavioral and cognitive malleability of the brain. Our experimental approach is to use a combination of forward genetics, reverse genetics and functional genomics to identify synaptic genes, generate mutants and then assay mutant laboratory uses this strategy to investigate three closely related questions: 1) How do synapses develop?, 2) How do synapses function?, and 3) How do synapses maintain adaptive plasticity? For more information, please visit the lab website. |
Brown-Schmidt, Sarah | Mechanisms of Utterance Production and Comprehension in Interactive Conversation My research focuses on the mechanisms by which people produce and understand utterances during the most basic form of language use: interactive conversation. I am currently pursuing three questions in related lines of research: (1) Common ground and perspective-taking: In particular, I am interested in understanding how knowledge about what our conversational partners do and don’t know guide language use. A central goal of my research is to understand how this knowledge is represented in memory, and how the way it is represented guides how it is used, including in conversations with more than two individuals. (2) Memory and language: In this line of research, I study the memory processes that interact with and support language use. In collaboration with Melissa Duff, I am examining the contributions of the hippocampal-dependent declarative memory system to real-time language processing through the study of individuals with severe declarative memory impairment. In another line of work, I am examining how asymmetries between source and destination memory map onto differences in memory representations between speakers and listeners. (3) Message formulation: How do thoughts become speech? I am most interested in understanding the first part of this process—the link between ideas or messages, and the very first stages of language production, particularly in unscripted, conversational speech. In investigating these questions, I combine the visual world eye-tracking technique (Tanenhaus, et al. 1995) with task-based, unscripted conversation. I design the tasks that participants engage in to elicit specific linguistic constructions in experimental conditions of interest without explicitly controlling what the participants say. I call this the targeted language game technique (Brown-Schmidt, 2005). Unscripted conversation differs from the scripted speech typically studied in experimental settings and it affords investigation of processes which are central to language, but have previously been difficult to examine using standard techniques. Critically, my work contributes to theories of language processing by providing novel insights into linguistic processes, as well as providing a test-bed for examining how well standard theories account for language use in its most basic setting. For more information, visit the lab website. |
|
Brunger, Jonathan | Email | Regenerative Medicine Our work combines principles from synthetic biology, gene editing and regenerative engineering to design cells as reliable therapeutic agents, automate organoid production, and improve lab-based models of disease. Our aims are to systematically perturb and synthetically reconstitute cellular signaling pathways to understand diseases and develop living therapies to overcome tissue deterioration. For more information, please visit the lab website. |
Calipari, Erin | Email | Defining the Neural Dysfunction that Underlies Psychiatric Disease Our Vision: Our research seeks to characterize and modulate the precise circuits in the brain that underlie both adaptive and maladaptive processes in reward, motivation, and associative learning, to develop improved treatments for complex and devastating psychiatric disorders. Research Goals: Defining the neural dysfunction that underlies psychiatric disease. Our research is guided by two overarching questions: 1. How do neural circuits integrate experiences with positive and negative stimuli to guide future behavior? 2. What are the molecular dysregulations that drive maladaptation in these processes? One of the most fundamental forms of learning is the ability to associate positive and negative stimuli with cues that predict their occurrence. The ability to seek out rewarding stimuli and avoid negative stimuli is critical to survival and is evolutionarily conserved across species. Organisms achieve this by assigning value to cues that predict these stimuli; however, dysregulation of these processes can precipitate a number of psychiatric disease states. Addiction, depression, and anxiety are all examples of syndromes characterized in part by dysregulation of associative learning. These are among the most prevalent neuropsychiatric disorders and are highly comorbid. Therefore, understanding the neural mechanisms governing associative learning has widespread implications for developing treatment interventions for psychiatric disease. Our work aims to combine cutting edge technology with comprehensive models of psychiatric disease to understand the circuit and molecular dysregulation that underlies these disorders. For more information, please visit the lab website. |
Calkins, David | Email | Neuroinflammatory Mechanisms of Axonal Degeneration in Optic Neuropathies Optic neuropathies blind through the progressive degeneration of the retina and optic nerve. As with other diseases of the central nervous system, optic neuropathies involve complex interactions between glial cells and retinal neurons and their axons. These interactions comprise a broad inflammatory response that includes both protective mechanisms and cascades that contribute to programmed degeneration. Our laboratory focuses on neuronal-glial interactions in glaucoma, an optic neuropathy that is blinding some 80 million people worldwide. In glaucoma, sensitivity to pressure in the eye causes the slow retraction of the axons in the optic nerve, which arise from the roughly 1.5 million retinal ganglion cells that collect the light signals used for vision. We utilize both in vivo and in vitro models to isolate the inflammatory signals from microglia and astrocyte glia in the retina and optic nerve that contribute to ganglion cell death. We also focus on the molecular mechanisms intrinsic to ganglion cells and their axons that mediate their sensitivity to ocular pressure and could represent novel therapeutic targets. Students working in our laboratory will receive training in many modern techniques in neuroscience, including primary neuronal cell culture, digital microscopy, quantitative real-time PCR, immunocytochemistry and ELISA. Students are also expected to participate in journal club and laboratory meetings on a regular basis. |
Carter, Bruce D. | Email | Mechanisms of Neurotrophin Signal Transduction I. Mechanisms of neurotrophin signaling through the p75 receptor: Our lab studies the signaling mechanisms regulating neuronal survival. Programmed cell death in the nervous system is a naturally occurring process in mammalian development; however, abnormal apoptosis is the basis for many neuropathologies, e.g. Alzheimer’s and Parkinson”s disease and ischemic injury. The delicate balance between neuronal survival and death is regulated, in part, by a family of growth factors referred to as the neurotrophins. The neurotrophins promote neuronal survival and differentiation through binding to the Trks, a family of tyrosine kinase receptors. Interestingly they also can induce apoptosis and degeneration through the p75 receptor, a member of the TNF receptor family. We have discovered a number of signaling pathways regulated by the p75 receptor and one of our research goals is to further delineate the molecular mechanisms by which it functions using a number of molecular, cellular and in vivo approaches. II. Process by which apoptotic neurons are phagocytosed: Following the extensive apoptosis that occurs during development of the nervous system, the resulting neuronal corpses must be efficiently removed to prevent an inflammatory response, which can eventually lead to neurodegeneration. Unfortunately, the molecular mechanisms underlying this phagocytic process in the nervous system are poorly understood. We recently demonstrated that satellite glial precursor cells are the primary phagocytes that engulf the many neuronal corpses in the developing dorsal root ganglia and identified a novel engulfment receptor, Jedi1, as mediating this engulfment. Current efforts are aimed at determining the mechanisms by which Jedi1 signals engulfment and investigating its role in regulating phagocytosis in other regions of the developing and mature nervous system. III. Molecular mechanisms of myelin formation: Myelin is a multilamellar structure that ensheaths axons and allows for the rapid conduction of electrical signals, acts as a protective barrier for axons, regulates regeneration and provides trophic support for neurons. This structure is produced by Schwann cells in the peripheral nervous system and oligodendrocytes in the CNS. The formation of peripheral myelin during development is initiated by carefully orchestrated signaling between Schwann cells and their associated axons, but the mechanisms underlying this intercellular communication remain poorly understood. The overall objective of this project is to elucidate the mechanisms regulating the formation of this essential neural structure. We have identified a number of signaling pathways in Schwann cells that are critical for their differentiation into a myelinating phenotype and are currently investigating the regulation of these signals in normal development and in models of demyelinating neuropathies. For more information, please visit the lab website. |
Catania, Kenneth C. | Mammalian Sensory Systems with a Focus on Cortical Organization, Function, and Development In my laboratory, we study the organization and function of mammalian sensory systems. Our investigations take a wide range of approaches including studies of animal behavior, investigation of peripheral sensory receptor structure and function, and studies of the organization of the central nervous system with an emphasis on neocortex. Information from these different approaches is integrated to obtain a broad view of how animal behavior, sensory receptors, and central nervous systems have evolved to meet the challenges mammals face in diverse sensory worlds. For more information, please visit the lab website.. |
|
Chang, Catie | Analysis and Interpretation of Neuroimaging Data My research seeks to advance our understanding of the human brain through methods for analyzing and interpreting functional neuroimaging data. Projects: 1. Computational analysis of fMRI data 2. Multi-modal imaging of dynamic brain states 3. Neural and physiological basis of fMRI signals/networks 4. Techniques for improving the quality of fMRI data |
|
Charles, David | Email | Deep Brain Stimulation on Parkinson’s Disease, Spasticity in Adults, Cervical Dystonia Our clinical research group’s focus is on improving the treatment of movement disorders, with specific interests in early stage Parkinson’s disease, Spasticity, and Cervical Dystonia. We undertake patient-oriented research in a variety of care settings including outpatient clinics, residential care homes, and retirement facilities. Deep Brain Stimulation in Early Stage Parkinson’s Disease More than one million Americans are living with Parkinson’s disease, a progressive neurodegenerative movement disorder characterized by loss of dopaminergic neurons in the substantia nigra. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an approved adjunctive therapy for mid- and advanced stage Parkinson’s disease that improves motor symptoms, quality of life, and activities of daily living while also reducing medication burden and associated complications. Vanderbilt University Medical Center completed the only prospective, randomized clinical trial testing DBS in very early stage Parkinson’s disease. Our ongoing line of research aims to investigate DBS in early stage Parkinson’s disease to better understand if this treatment may slow the progression of the disease. Spasticity in Adults Spasticity is a form of muscle rigidity, which is often experienced by people with nervous system injuries. Spasticity can lead to many negative symptoms, such as increased incidence of urinary tract infection, pain and discomfort, and reduced quality of life. Additionally spasticity may impair activities of daily living, making it difficult to perform care activities for patients who require support. Our current line of research aims to validate the use of newly developed tools to assist with the identification and diagnosis of spasticity and to improve diagnostic criteria through identification of new markers of disease. Cervical Dystonia in Adults Cervical dystonia is painful over-activity of the neck and shoulder muscles resulting in an abnormal head position. Our current line of research addresses treatment continuation in patients who receive treatment at the Vanderbilt University Medical Center outpatient clinic. Clinical Research Opportunities We are accepting applications for undergraduate research roles within our team. Please send your résumé with an accompanying statement of interest to david.charles@vanderbilt.edu. |
Chiang, Chin | Signaling Mechanisms That Control Brain Function and Disease Our laboratory is interested in the signaling mechanisms that control brain function and disease. Associative sensory learning is a process whereby the brain learns an association between two sensory stimuli from the environment. Dysfunction in this process has been linked to developmental disabilities in humans such as autism. The brain consists of inhibitory or excitatory neurons that express neurotransmitter GABA or glutamate, respectively. We are interested in how these neurochemically distinct neurons are generated and how they contribute to the processing of sensory stimuli and progression of brain tumors. We use cerebellum as a system because it is required for associative sensory learning and the origin of the most common type of pediatric brain cancer. We use cutting edge techniques and multidisciplinary approaches that include the utilization of state-of-the-art mouse molecular genetics, live cell imaging, behavioral neuroscience, gene expression profiling and orthotopic grafting of tumor cells, combined with state-of-the-art localized stereotaxic injection system for in vivo gene delivery and manipulation. |
|
Cigliola, Valentina | Spinal Cord Regeneration Our research is dedicated to finding methods to regenerate the injured spinal cord, with the ultimate goal of reversing paralysis. In adult mammals spinal cord injury leads to permanent loss of mobility and sensation. In contrast, zebrafish regenerate and recover function after spinal cord injury. Key for this regenerative capacity are neurogenesis and the formation of a tissue bridge, composed of glial cells and nerve fibers (axons), that connects the severed spinal cord stumps. Neonatal mice also regenerate axons after spinal cord injury, and recent studies suggest regenerative mechanisms similar to those in zebrafish. We deploy frontline genetics, transcriptomics, in vivo cellular, molecular, and behavioral approaches in zebrafish and mice to answer the following questions: What factors enable innate spinal cord regeneration and how are they regulated? Are the pro-regenerative mechanisms in zebrafish and neonatal mice conserved? Can we awaken regeneration in adult mammals by reactivating innate pro-regenerative mechanisms? We believe that elucidating key mechanisms of innate regeneration using zebrafish and neonatal mice can reveal molecular, cellular, and bioengineering approaches to treating spinal cord injury in adult mammals and, ultimately, in humans. For more information, please visit the lab website. |
|
Claassen, Daniel | Email | Diagnosis and Treatment of Neurodegenerative Diseases Dr. Claassen’s research focus is to understand brain-behavior relationships in the context of the diagnosis and treatment of neurodegenerative diseases. His research studies assess therapeutic outcomes in neurodegenerative disorders, using innovative cognitive neuroscience and neuroimaging tools. In Parkinson disease, he examines how dopaminergic medications can alter behavior, and his current studies address cognitive changes that account for impulsive compulsive behaviors. His research uses multimodal imaging studies, including assessments of blood flow (arterial spin labeling), resting state BOLD connectivity, MR spectroscopy, and Positron Emission Tomography, as well as novel cognitive neuroscience tools assessing medication effects on risk, reward-learning, and impulsivity. For more information, please visit the lab website. |
Colbran, Roger J. | Email | Regulation of Excitatory Synapses Modulation of the synaptic glutamate receptors and synaptic morphology by postsynaptic phosphorylation/dephosphorylation plays a central role in normal earning and memory and is ofter disrupted in diseased states. In particular, calcium/calmodulin-dependent protein kinase II (CaMKII) and protein phosphatase 1 (PP1) are known to play critical roles in long-term potentiation (LTP), long-term depression (LTD) and other forms of synaptic plasticity that underlie learning and memory. This laboratory employs a broad array of approaches to investigate the molecular basis for synaptic regulation of CaMKII and PP1 and the physiological roles of these molecular mechanisms. Disruptions of these mechanisms in diseased states such as Parkinson’s Disease and Angelman Syndrome are being uncovered, suggesting potential novel strategies to treat these devastating neurological disorders. For more information, please visit the lab website. |
Collins, Sheila | Biochemical Mechanisms that Regulate Body Weight and Insulin Sensitivity Dr. Collins’ laboratory is interested in the biochemical mechanisms that regulate body weight and insulin sensitivity. Activation of the adrenaline receptors, specifically the members of the beta-adrenergic receptor (beta-AR) family, provides the major stimulus for the hydrolysis and release of stored lipids. They are also key drivers of a process called ‘nonshivering thermogenesis’ in brown fat. Brown fat cells are specialized cells rich in mitochondria and largely defined by their ability to express the mitochondrial uncoupling protein UCP1, which allows the dissipation of the proton gradient in the inner mitochondrial membrane to yield heat at the expense of ATP production. In addition to the beta-ARs, the cardiac natriuretic peptides also activate these same mechanisms through a parallel pathway in fat cells. By understanding their signal transduction properties and how they are regulated, Dr. Collins hopes to be able to find a way to increase energy expenditure in fat in the fight against obesity and the devastating diseases that accompany it, such as diabetes, cardiovascular disease, and hypertension. Dr. Collins has made seminal contributions in the field of obesity and diabetes at the molecular and physiological level. For more information, please visit the lab website. |
|
Compas, Bruce | Current research focuses on: (1) Family Cognitive-Behavioral Prevention of Depression in Families of Depressed Parents (NIMH); (2) Parent-Child Communication and Coping with Pediatric Cancer (NCI); (3) Remediation of Neurocognitive Problems in Children with Central Nervous System Tumors (NCI); (4) Neurocognitive Function in Children with Sickle Cell Disease (NICHD); (5) Neurocognitive Function in Children with Congenital Heart Disease; (6) Enhancing Coping and Communication in Children with Cancer and Their Parents: A Novel Internet-Based Intervention (ALSF). For more information, please visit the lab website. |
|
Conley, Alexander | Developing Treatments for Cognitive Decline and Neurodegenerative Disorders Dr. Conley’s research interests focus on treatment discoveries to reverse cognitive and memory problems that develop following trauma and neurodegeneration. In particular, he has studied the development and implementation of a novel cholinergic agent for the treatment of Alzheimer’s disease, and has contributed to clinical trials for mild cognitive impairment, Alzheimer’s disease, and geriatric depression. |
|
Conn, P. Jeffrey | Neuropharmacology/Drug Therapies for Brain Disorders The primary focus of research in our laboratory is to develop a detailed understanding of the cellular and molecular mechanisms involved in regulating chemical and electrical signaling in the central nervous system (CNS). Such changes in neuronal function are likely to play important roles in all normal physiological processes in the brain and are critical for development of a variety of brain diseases, including Alzheimer’s disease, Parkinson’s disease, schizophrenia, epilepsy, drug dependence and other neurological and psychiatric disorders. We are especially interested in understanding how signaling is regulated in identified neuronal circuits that are important for these human neurological and psychiatric disorders. This is a highly multidisciplinary endeavor and we employ a broad range of techniques including electrophysiology, biochemistry, imaging, anatomy, and molecular biology techniques. Since our ultimate goal is to understand the impact of cellular and molecular changes to changes in intact neuronal networks and animal behavior that impact CNS disorders, we also employ a range of techniques in behavioral and systems neuroscience. By developing this range of understanding, we hope to develop new strategies for treating neurological and psychiatric disorders. Our current research is especially focused on development of novel treatment strategies for schizophrenia and Parkinson’s disease. Also, we have increasing interests in drug addiction, Alzheimer’s disease, and severe anxiety disorders. In each of these areas, recent basic and clinical studies are shedding light on new approaches to develop novel treatment strategies. Our basic science studies are revealing a number of key regulatory proteins that have exciting potential as novel drug targets for treatment of serious psychiatric and neurological disorders. In addition to pursuing the basic research needed to identify these novel drug targets, we are directly involved in taking these findings to the next step by pursuing early stage drug discovery efforts. This is an innovative and exciting endeavor that is rare in academic institutions. We have now purchased or gained access through collaborations with chemical companies to libraries of over 1 million novel small molecules with drug-like properties. In addition, working in the Vanderbilt Institute for Chemical Biology, we have established the infrastructure needed for high throughput screening these molecules for unique compounds that have potential for development into novel drugs. The combination of high throughput screening and synthetic chemistry provides an unprecedented opportunity for discovery and development of small molecules that may pave the way to eventual discovery of new drugs. By moving aggressively to move our basic science efforts into early stage drug discovery programs, we are making exciting advances that could lead to novel treatments for schizophrenia, Parkinson’s disease, and other CNS disorders. For more information, please visit the lab website. |
|
Constantinidis, Christos | My lab’s overarching goal is to understand how neuronal activity in the cerebral cortex gives rise to cognitive functions. We address this question through designing behavioral tasks, acquiring experimental data via neurophysiological recordings and imaging, and computational analysis of the results. Our work focuses primarily on non-human primate models, but we aim to translate knowledge gained from these experiments for the benefit of human conditions in which cognitive functions have been compromised. For more information, visit the lab website. |
|
Cooper, Michael | Molecular Signaling Pathways that Regulate Cell Growth in the Nervous System During Embryonic Development and Tumorigenesis Our research program is focused on molecular signaling pathways that regulate cell growth in the nervous system during embryonic development and tumorigenesis. Malignant gliomas are primary brain tumors that are recalcitrant to current therapies and patients with this disease currently have a poor prognosis. Malignant gliomas are composed of heterogeneous cell types and identification of particular cell types within the tumor that contribute to growth and recurrence may lead to the development of more effective therapies. In particular, the identification of tumor-initiating cells has provided a framework for conceptualizing a hierarchical arrangement of multipotent cancer stem cells giving rise to transit-amplifying and postmitotic glioma cell types. Impediments to investigating this fundamental concept in glioma biology include the lack of cell markers for characterizing the phenotypes, lineage relationships and regulatory molecular pathways of these putative cellular compartments. Currently, CD133 is the most commonly used surface marker for prospective isolation of tumor-initiating cells from malignant gliomas. However, the array of cellular phenotypes encompassed by CD133 expression is not known. One avenue for investigating brain tumor heterogeneity in our laboratory includes studies on the Hedgehog signaling pathway. Towards these goals, the laboratory utilizes a patient tissue repository to identify the specific subtypes of malignant gliomas in which the Hedgehog signaling pathway is operational and activated. Our research team has established a preclinical model for growing human malignant gliomas in mice to demonstrate that Hedgehog signaling regulates glioma growth and that pathway inhibition enhances survival. The Hedgehog pathway appears to be activated in a subset of glioma cells (CD133+ cells), and determining how Hedgehog signaling impacts this cellular compartment in gliomas is a primary focus of research. Longer term goals of these preclinical studies are to design clinical trials of Hedgehog inhibitors based upon selecting patients with malignant glioma who might best respond to Hedgehog inhibitors, defining the mechanism of action of Hedgehog pathway inhibition on glioma cancer stem cells and avoiding potential mechanisms of drug resistance. Our laboratory is also involved in several collaborative efforts to model glioma cellular compartments. One of these is to generate monoclonal antibodies against heterogeneous malignant glioma cell types. A central goal of these studies is to determine if these antibodies can be used to define subclasses of glioma tumor initiating cells and their lineages. |
|
Corbett, Blythe A. | Social Emotional NeuroScience Endocrinology (SENSE) The primary aim of my Social Emotional NeuroScience Endocrinology (SENSE) lab is to better understand the relationship between social interaction and stress responsivity in children with autism spectrum disorders (ASD) to identify phenotypes and inform treatment. To this end we currently employ several methods of analysis including neuroimaging (fMRI), neuropsychological testing, hormone expression and sophisticated behavioral coding. The SENSE program is fundamentally translational through the inclusion of naturalistic paradigms, peer mediation and novel therapeutic approaches that have been informed by previous and ongoing studies in my lab. For more information, please visit the lab website. |
|
Creanza, Nicole | Cultural and Genetic Evolution in Language and Birdsong Nicole Creanza’s research targets three fundamental questions: (1) In what ways can learned behaviors change the course of genetic evolution? (2) How much information about evolutionary history persists in learned behaviors? (3) How do ecological factors, such as environmental and species interactions, affect the evolution of learned behaviors? Her lab addresses these questions by integrating the study of human linguistic and genetic variation, the evolution of learned birdsong in a genetic context, and theoretical and computational models of genetic and cultural evolution. For more information, please visit the lab website. |
|
Cutting, Laurie | Email | Using Neuroimaging and Behavioral Testing to Investigate Reading Comprehension, Neurofibromatosis Type1 and Reading Interventions The Education and Brain Sciences Research Lab (EBRL) seeks to understand why some children are successful at learning to read while others are not. Using neuroimaging and behavioral testing, our NIH and NSF funded studies investigate reading comprehension, Neurofibromatosis Type 1, and the effects of reading interventions in children with and without reading difficulties. We aim to improve the diagnosis and treatment of children who are struggling learners by combining findings from neurobiological, psychological, and educational perspectives. For more information, please visit the lab website. |
Darby, Ryan | Email | Dr. Darby is interested in patients with symptoms at the border zone between neurology and psychiatry. Both neurological and psychiatric patients can share similar symptoms, including delusions, hallucinations, and criminal behavior. This suggests that these symptoms may share a common pathway across different diseases. However, these different diseases often have neuroimaging abnormalities in different locations, making it difficult to understand how the same symptom could develop. To address this problem, Dr. Darby helped to develop a new neuroimaging approach to localize complex behaviors to brain networks, rather than specific brain locations. He first studied this in patients with focal brain lesions, showing that brain lesions in different locations causing the same syndrome were all functionally connected to the same brain network. Dr. Darby’s current work is focused on applying this method to neurodegenerative disorders in order to understand why brain atrophy in different locations can cause the same clinical syndrome. He is using this method in combination with behavioral testing to study criminal behavior in frontotemporal dementia patients and delusions/hallucinations in patients with Alzheimer’s Disease, Parkinson’s Disease, and Lewy Body Dementia. For more information, please visit the lab website. |
Dean, Danielle | Email | Nutritional and Environmental Factors' Effect on Pancreatic Islet Cell Function and Proliferation The Dean lab seeks to understand how nutritional and other environmental factors affect pancreatic islet cell function and proliferation. Islet alpha cells secrete glucagon in response to hypoglycemia leading to increased glucose output by liver, but persons with diabetes often have hyperglucagonemia further contributing to hyperglycemia. Very little is known about signals regulating alpha cells. We have used a mouse model with interrupted glucagon signaling that displays alpha cell hyperplasia and hyperglucagonemia to identify circulating factors that stimulate alpha cell proliferation. We described that these circulating factors are amino acids defining a novel hepatic-pancreatic islet alpha cell axis that is conserved across vertebrate species. The Dean lab is current interested in 1) defining the mechanism of how amino acids are sensed by alpha cells to stimulate proliferation and glucagon secretion and 2) investigating the role of amino acids on alpha cell dysfunction in diabetes. For more information, please visit the lab website. |
De la Huerta, Irina | Email | Photoreceptors' Role in the Development of Retinal Vascular Diseases The goal of our research is to understand the roles that retinal neurons, in particular photoreceptors, play in the development of retinal vascular diseases such as diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity. Questions addressed in the lab include: 1. How do metabolic perturbations, such as hyperglycemia and hyperlipidemia, affect retinal neurons? 2. How do metabolic perturbations affect the “crosstalk” between retinal neurons, glia, and retinal vasculature? 3. What are the signaling pathways involved in these processes? We use tissue culture, biochemical, and molecular approaches in combination with in vivo models of diabetes to answer these questions. For more information, visit the lab website. |
Delpire, Eric | ||
Denton, Jerod S. | Email | Potassium Channel Physiology 1. High-throughput discovery of novel potassium channel probes Inward rectifying K+ (Kir) channels play key roles in cardiac, neuronal, endocrine and epithelial physiology and disease. Progress in the field has been hampered by the lack of selective pharmacological probes that target specific members of the Kir channel family. To overcome this barrier, we recently performed a high-throughput screen of approximately 250,000 organic small molecules to discover novel modulators of Kir1.1, the founding member of the Kir channel family. We are working closely with researchers in the Vanderbilt Institute for Chemical Biology to understand how these newly discovered compounds modulate Kir channel function. Students interested in combining chemistry, pharmacology and electrophysiology to understand K+ channel structure-function relationships are strongly encouraged to apply. NOTE TO ROTATION STUDENTS: Students interested in working on this project will have a unique opportunity to use state-of-the-art automated (Port-a-Patch) and fully automated (Patchliner) patch clamp electrophysiology workstations from Nanion Technologies (http://www.nanion.de). These automated patch clamp rigs require very little training, so students can spend their rotation studying ion channels, not learning how to patch clamp a cell. 2. Potassium channel structure, function and trafficking in human disease Heritable mutations in the gene encoding Kir1.1 give rise to antenatal Bartter syndrome (aBs), kidney tubule disease presenting with renal salt and water wasting and acid-base disturbances. More than 30 loss-of-function mutations distributed throughout the channel protein have been identified; however, surprisingly little is known about the molecular and cellular mechanisms underlying channel dysfunction for most of these mutations. We are using a combination of molecular modeling, novel computational methods, mutagenesis, protein biochemistry and patch clamp electrophysiology to understand how mutations disrupt Kir1.1 channel function and trafficking in aBs patients. We are also testing if novel channel activators discovered in high-throughput screening (see above) can rescue certain loss-of-function aBs mutations in Kir1.1. For more information, please visit the lab website. |
Donthamsetti, Prashant | Interplay Between Neural Signaling and Behavior in Health and Disease The Donthamsetti Laboratory is a new addition to the Department of Pharmacology and Vanderbilt Brain Institute. We are developing cutting edge molecular tools to uncover the complex interplay between neural signaling and behavior in health and disease. Our approach is interdisciplinary and spans molecular biology, high throughput screening, confocal microscopy, electrophysiology, and in vivo analysis of mouse models. |
|
Duff, Melissa | Email | Hearing and Speech Sciences The overall goal of the Communication and Memory Lab is to understand the cognitive and neural substrates of memory, language, and social interaction. We conduct basic and applied research across two main themes: 1) Characterizing the role of hippocampal dependent memory in language use and processing, and in flexible cognition more broadly; 2) Identification of long-term outcomes and recovery patterns in individuals with traumatic brain injury and the development of interventions for disorders of memory, learning, and communication. Methodologically, the lab combines neuropsychological, neuroimaging, and eye-tracking methods together with behavioral methods. We work to address questions about the contribution of distinct forms of memory to various aspects of communication and social interaction and the dynamic network of neural and cognitive systems that support memory and language in the everyday communicative settings. The lab is also home to the Brain Injury Patient Registry, a repository of demographic information, and state of the art neuropsychological and neuroanatomical data from individuals with focal lesions and traumatic brain injury, which serves as a unique resource for conducting large-scale basic and translational research in the area of acquired brain injury. |
Dykens, Elisabeth M. | Email | Behavioral Phenotypes of Persons with Genetics Syndromes Associated with Developmental Disabilities Elisabeth M. Dykens, Ph.D. is Professor of Psychology and Human Development and Associate Director of the Vanderbilt Kennedy Center for Research on Human Development. Her research examines the behavioral phenotypes of persons with genetics syndromes associated with developmental disabilities, primarily Williams, Prader-Willi, and Down syndromes. Although much of her work focuses on psychopathology, Dykens also examines profiles of neurocognitive, personality, and adaptive strengths and weaknesses in these disorders, and how these unusual profiles refine treatment and shed light on typical development. Current studies examine: (1) physiological and neurological mechanisms of compulsive and hyperphagic behavior in persons with Prader-Willi syndrome, including specific neuropeptides involved in aberrant satiety and behavior, and EEG/ERP studies; (2) visual-spatial strengths in persons with Prader-Willi syndrome; (3) physiological and neurological factors involved in both high rates of anxiety and unusual musical talents in persons with Williams syndrome,including clinical, EEG/ERP and fMRI studies; (4) the development and trajectory of maladaptive behaviors and unusual strengths in syndromes, and how these relate to genetic status, aging, and intervention; (5) families of persons with mental retardation, including stress, coping, and positive outcomes for family members; and (6) interface between positive psychology, and research and interventions for persons with developmental disabilities. |
Eley, John | Experimental Radiation Treatment Strategies for Cancer Patients Dr. Eley's research focuses on the design and preclinical testing of experimental radiation treatment strategies that aim to reduce the severity of treatment side effects for cancer patients receiving radiotherapy, most recently in the context of brain cancer and neurologic side effects. His research interests include particle therapy, microbeam therapy, ultra-high-dose-rate radiation, computational radiation transport, and the radiobiologic experiments necessary to build biologic evidence for new therapy ideas prior to initiating human trials. He has several years of experience with experimental use of high-energy particle beams of protons and carbon ions, recently also with helium and lithium ions, and clinical experience with proton therapy. His work often requires cross-disciplinary expertise and overlaps in the fields of physics, radiation oncology, neurobiology, neurosurgery, pediatric medicine, radiology, applied mathematics, and computer science. |
|
Englot, Dario | Email | Using Neuroimaging and Electrophysiology to Study Brain Networks in Neurological Diseases and Normal Brain States The Brain Imaging and Electrophysiology Network (BIEN) Lab at Vanderbilt University is led by neurosurgeon Dario J. Englot, M.D., Ph.D. The lab integrates human neuroimaging and electrophysiology techniques to study brain networks in both neurological diseases and normal brain states. One major focus of the lab is to understand the complex network perturbations in patients with epilepsy, by relating network changes to neurocognitive problems, disease parameters, and changes in vigilance in this disabling disease. Multimodal data from human intracranial EEG, functional MRI, diffusion tensor imaging, and other tools are utilized to evaluate resting-state, seizure-related, and task-based paradigms. Other interests of the lab include the effects of brain surgery and neurostimulation on brain networks in epilepsy patients, and whether functional and structural connectivity patterns may change after intervention. Through studying disease-based models, the group also hopes to achieve a better understanding of normal human brain network physiology related to consciousness, cognition, and arousal. Finally, surgical outcomes in functional neurosurgery, including deep brain stimulation, procedures for pain disorders, and epilepsy, are also being investigated. For more information, visit the lab website. |
Fazio, Lisa | Email | Improving Learning Through Basic Principles From Cognitive and Development Psychology My research is concerned with how to improve student learning using basic principles from cognitive and developmental psychology. I examine simple knowledge such as history facts, as well as more complex forms of knowledge such as mathematics. My research informs basic theories about learning and memory, while also having clear applications for classroom practice. For more information, please visit the lab website. |
Feola, Brandee | Email | Negative Emotions Throughout Development and Across Psychiatric Disorders My research investigates negative emotions throughout development and across psychiatric disorders, focusing on anxiety and psychotic disorders. My lab is particularly interested in how individuals with psychosis differ in stress, anxiety, and threat responses. My research uses multiple methods including brain imaging (structure, activation, connectivity), physiological measures (cortisol, heart rate, skin conductance), and behavioral assessments (clinician-rated, self-report). We are currently conducting a neuroimaging study on the intersection of anxiety and psychosis that examines how threat responses differ in people with schizophrenia and how anxiety relates to individual differences in responses. |
Flynn, Robb | Email | Etiology and Physiology of Diseases of the Gastrointestinal Tract and Liver I am a molecular and cellular biologist focused on understanding the etiology and physiology of various diseases of the gastrointestinal tract and liver. Specifically, my laboratory investigates how altered lipid handling, commensal gut microbiota and lipid peroxides contribute to disease onset and progression. We additionally examine how improved glucose tolerance and insulin sensitivity are restored after bariatric surgery. Using human tissue samples obtained before and after bariatric surgery as well as a variety of genetically- and surgically-engineered mouse models I have made significant contributions to the understanding the endocrine effect of bile acids, the pathology of nonalcoholic fatty liver disease (NAFLD) and the contributing role of reactive lipid peroxides to immune cell activation. We are experienced with and routinely employ an ensemble of technologies including mass spectrometry (LC/MS/MS; -omics), next-generation sequencing and stable isotopic tracers to characterize the profiles and fates of bioactive lipids and other metabolites that are phenotype mediating. We are using our new-found knowledge to develop genetically-engineered large animal models of NAFLD, engineer commensal therapeutic bacteria that can confer metabolic benefits, identify new targets of NAFLD using precision-based medicine and apply novel scavengers of reactive lipid peroxides for the treatment of liver disease, Alzheimer’s disease and insulin resistance. Through our basic and translational scientific efforts we intend to better understand the deleterious effects of nutrient overprovision, identify new targets for therapeutic intervention, and improve patient care and quality of life. |
Fuhrmann, Sabine | Email | Cellular and Molecular Mechanisms Regulating Differentiation, Morphogenesis, and Regeneration of Ocular Tissues The goal of our research is to understand the cellular and molecular mechanisms regulating differentiation, morphogenesis, and regeneration of ocular tissues. Questions addressed in the lab include: How is eye development initiated in the anterior neuroepithelium and what factors determine the early steps of eye formation? How is differentiation and morphogenesis of ocular tissues controlled? What are the signals involved in these processes, what are their downstream targets, and is there crosstalk between different pathways? How is regeneration of ocular tissues achieved? We use conditional inactivation in mice, in combination with a variety of tissue culture, biochemical, molecular, and cell biological approaches. We are investigating the function of extracellular signaling pathways (e.g. Wnt) and intracellular effectors (e.g. Cdc42) in ocular morphogenesis and differentiation. Development and adult regeneration of the retinal pigment epithelium (RPE) is another major focus of the lab. For more information, please visit the lab website. |
Gallagher, Martin J. | Email | Understanding how Mutations in Genetic Forms of Epilepsy Change Nerve Function In 1995 S.F. Berkovic and colleagues identified the first mutation in an ion channel (nicotinic acetylcholine receptor) associated with a genetic form of human epilepsy. Since then genetic linkage analysis has identified mutations in sodium, potassium, calcium, and GABA ion channels in patients with inherited seizure disorders. Dr. Gallagher’s main research interest is to deduce how these mutations affect ion channel structure and function. Dr. Gallagher express’ human wild type and mutant ion channels in HEK cells and then use patch clamp techniques to determine the physiologic changes in the mutants as well as the effect of drugs. Neurotransmitters and drugs are applied using a rapid-step technique (sub-millisecond exchange times) to simulate how these compounds interact with the ion channels in an actual synapse. This rapid application technique accurately reproduces miniature endplate currents obtained from neurons. |
Gama, Vivian | Email | Regulating Stem Cell Self-Renewal and Differentiation Stem cells (both normal and cancerous) are defined by their ability to self-renew, in order to maintain their numbers, and their ability to differentiate into distinct cell types. Our lab is interested in uncovering new pathways regulating these stem cell properties. We are particularly interested in characterizing the functions of apoptotic proteins in maintaining self-renewal and pluripotency and in the regulation of differentiation and reprogramming. Using genetics, biochemistry, proteomics and live cell imaging we are uncovering the role of apoptotic proteins for the maintenance of the stem cell phenotype. We use embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and cancer stem cells (Glioblastoma and Medulloblastoma) as model systems. For more information, please visit the lab website. |
Gamazon, Eric R. | Genomics, Computational Biology, and Genomic Medicine We develop and apply genomic and computational methods to investigate the genetic architecture of complex traits, including disease risk and drug response. We are interested in what can be learned from DNA sequence and multi-omics data about disease mechanism, therapeutic intervention, molecular evolution, and genome function. An ongoing project involves understanding gene regulation across tissues and cell types to gain insights into disease mechanisms and therapeutic targets. We utilize large-scale DNA biobank data linked to electronic health records, along with data science and computation, to identify genes involved in human health and disease in diverse populations, to discover novel biomarkers, and to enable a comprehensive systems view of the disease phenome. Dr. Eric R. Gamazon is broadly interested in genomics, computational biology, and genomic medicine and leads an R01-funded interdisciplinary laboratory of computational scientists, molecular biologists, and physicists. He is a faculty member of the Vanderbilt Genetics Institute. His lab is a team of computational and wet lab researchers, reflecting diverse research interests. For more information, please visit the lab website. |
|
Garber, Judy | Email | Developmental Psychopathology, Mood and Anxiety Disorders Judy Garber, Ph.D., Professor of Psychology and Human Development, Psychology, and Psychiatry. Her research focuses on the etiology, course, outcome, treatment, and prevention of depression in children and adolescents. She studies social-cognitive, environmental, biological, and interpersonal factors that contribute to the onset and maintenance of mood disorders. Dr. Garber is interested in the efficacy of cognitive-behavioral interventions with depressed adolescents, and the prevention of depression, particularly in high-risk offspring of depressed parents. Dr. Garber’s current research includes (a) a randomized controlled trial (RCT) testing the efficacy of cognitive behavioral therapy enhanced with training in theory of mind/perspective-taking; (b) a multi-site RCT testing the efficacy of a coached, online mindfulness program with adolescents; and (c) a multi-site RCT testing a family-based cognitive-behavioral/coping intervention for the prevention of depression in offspring of depressed parents. |
Gauthier, Isabel | Email | Visual Object Recognition Dr. Gauthier studies visual object recognition, with particular emphasis on the plasticity of recognition mechanisms and their neural substrate. One issue that is of particular interest to her is how the visual system organizes itself into what appears to be category-specific modules. For instance, face recognition is often given as an example of a highly specialized module that may function independently from general object recognition mechanisms. However, faces are among the most visually similar objects that we need to recognize individually and most of us acquire a large amount of expertise in doing so throughout our lives. A diversity of techniques (e.g., expertise training with computer-generated objects, brain-lesion studies, functional magnetic resonance imaging experiments) can be used in order to explore factors that may contribute to the tuning of general mechanisms for the particular problem of face recognition. Current research continues to explore the role of expertise in object recognition, including new lines of research into perceptual expertise with letters and also haptic expertise. Other projects include looking at the role of spatial frequencies in various visual areas involved in object recognition and investigating interactions between the visual and semantic systems. |
Gifford, René | Email | Speech Perception, Speech and Language Function, and Basic Auditory Function Our lab focuses on speech perception, speech and language function, and basic auditory function as associated with the combination of electric and acoustic hearing—particularly with respect to preservation of acoustic hearing in the implanted ear. Additional interests currently under investigation in the lab include: 1. Binaural hearing with bilateral cochlear implants and/or hearing preservation 2. Image-guided programming for cochlear implants 3. Pre-implant prediction of postoperative outcome For more information, please visit the lab website. |
Gordon, Reyna | Email | Music Cognition Lab RHYTHM AND GRAMMAR Our primary research interest is the relationship between rhythm and language development in children. This work is currently focused on investigating: 1) associations between rhythm perception/production and grammar skills in children with typical and atypical development, 2) neural and behavioral mechanisms underlying these associations (i.e., speech rhythm sensitivity and auditory working memory), and 3) the potential of musical training to improve language skills in children with language disorders. MUSIC IN DEVELOPMENTAL DISABILITIES Our past work has used time-frequency and ERP analyses of EEG data to examine the dynamics of auditory perception and their relation to social cognition in developmental disabilities (Williams Syndrome, Rett Syndrome and MECP2 duplication syndrome). We are currently beginning a new series of studies that investigate musical experiences as a tool for social engagement in children with Autism spectrum disorders, with Dr. Miriam Lense, a Visiting Research Fellow in our Lab. |
Gould, Kathleen L. | Email | Cell Cycle Control, Pre-mRNA Splicing Proper coordination of nuclear and cell division is necessary for the normal development of all eukaryotic organisms and for the maintenance of genomic integrity. The goals of my laboratory are two-fold: 1) to understand the molecular mechanisms regulating cytokinesis and 2) to learn how cytokinesis is coordinated with other events of the cell cycle including chromosome segregation and microtubule cytoskeletal rearrangements. We are asking a) what is the full complement of proteins that comprise the cytokinetic machinery, b) how is the cytokinetic machinery precisely localized between segregating chromosomes, c) what molecular event(s) triggers constriction of the cytokinetic machinery, and d) what ensures the correct timing of cytokinesis with respect to chromosome segregation? To address these questions expeditiously, we are using yeast as a model organism. Yeast offers many experimental advantages for the study of cell cycle regulation including facile genetics and a fully sequenced and annotated genome. Using genetics, proteomics, live cell imaging, biochemistry, and structural biology we are unraveling the sequence of events that directs formation and then constriction of the cytokinetic ring. We are also studying protein phosphorylation signaling pathways and ubiquitin ligases that control the spatial precision of cytokinesis, the organization of the microtubule cytoskeleton through the cell cycle, and the timing of cytokinetic events during mitosis. For more information, please visit the lab website. |
Graham, Todd R. | Email | Biological Membranes The overall goal of our lab is to determine how biological membranes are assembled and organized. This includes analysis of how proteins are localized to the appropriate organelles in the secretory and endocytic pathways, and how P4-ATPases contribute to membrane asymmetry, protein trafficking and human disease. Our research relies heavily on the use of model systems, such as Saccharomyces cerevisiae and mus musculus, and techniques such as molecular cloning, cell imaging, flow cytometry, genetics and biochemical analysis of proteins. For more information, please visit the lab website. |
Grueter, Brad | Advance the Current Understanding of the Nucleus Accumbens The goal of the Grueter lab research program is to advance the current understanding of the nucleus accumbens (NAc), a brain region responsible for integrating information from diverse inputs and modifying complex motivated behaviors, including its involvement in adaptive responses to rewarding and aversive stimuli. Specifically, we strive to elucidate the molecular constituents in the NAc that are necessary and sufficient to drive complex motivated behaviors. As part of the mesolimbic dopamine system, the NAc integrates a complex mix of excitatory, inhibitory and modulatory inputs to optimize adaptive motivated behaviors. Dynamic alterations in synaptic transmission within this circuitry are strongly implicated in the development and expression of many neuropsychiatric disorders. Thus, two broad questions we address are: 1) how does in vivo experience such as cocaine exposure, pain, or high fat diet alter the neurocircuitry of the NAc? 2.) What are the synaptic mechanisms underlying the behavioral adaptations to in vivo experience? The approaches we incorporate allow us to thoroughly characterize the synaptic circuitry of the NAc in basal and pathophysiological conditions using a combination of cutting edge techniques in electrophysiology, molecular biology, metabolic phenotyping, optogenetics and behavior. These studies will provide information on how the NAc circuits integrate environmental stimuli and allow for specific behavioral responses. This enhanced understanding of NAc function may provide a basis for a more individualized approach to the treatment of many psychiatric disorders. For more information, please visit the lab website. |
|
Grueter, Carrie | Lipid Synthesis as it Relates to Neuroinflammation and Neurogenesis in the Central Nervous System My research program investigates the role of lipid synthesis enzymes, DGAT1 and DGAT2, in the CNS with a focus on neuroinflammation and neurogenesis as they relate to reward circuitry. A second arm of my program focuses on the role of intestinal lipid synthesis in regulating whole-body energy balance via the gut-brain axis. |
|
Gurevich, Eugenia | Email | Regulation of Dopaminergic Signaling in the Normal and Diseased Brain I am interested in the regulation of dopaminergic signaling in the normal and diseased brain. My current studies are focused on the proteins mediating homologous desensitization of G protein-coupled receptors (GPCRs), arrestins and G protein-coupled receptor kinases (GRK). These proteins are very important for the normal functioning of the brain, because they determine the intensity and duration of the GPCRs response to stimulation. If the desensitization process is compromised, neurotransmitter receptors, many of which belong to the GPCR family, often become supersensitive. Conversely, if desensitization is facilitated, the response could be completely lost. We are currently studying the role of GRKs and arrestin in regulating the signaling of dopamine receptors in the striatum in Parkinson’s disease and in response to L-DOPA therapy. We are also interested in how GRKs and arrestins regulate dopaminergic responsiveness to psychostimulant drugs such as cocaine and amphetamine and the role these proteins play in drug addiction. To answer these questions, we use virus-mediated gene transfer to increase or decrease the concentration of GRKs or arrestin in the brain of living animals and measure alterations in behavior. For more information, please visit the lab website. |
Gurevich, Vsevolod | Email | Structure and Function of Arrestins and their Role in Cell Signaling The lab studies the regulation of signaling by G protein-coupled receptors (GPCRs), focusing on structure, function, and biology of arrestin proteins. The lab has two groups of projects. Our work in vision focuses on visual arrestin interactions with light receptor rhodopsin. These projects involve a variety of methods, from structural, biochemical, and biophysical work with purified proteins to electroretinography in living mice. We engineered enhanced mutants that do not require rhodopsin phosphorylation for tight binding. We are testing the ability of these mutants to compensate for defects of rhodopsin phosphorylation in genetically modified mice. The initial success of our proof-of-concept studies suggest that this is a viable approach for compensational gene therapy in vision, as well as in other systems where excessive GPCR signaling underlies the pathology. We are also studying the interactions of non-visual arrestins with numerous GPCRs abundant in the nervous system, such as dopamine receptors (involved in addiction, Parkinson’s disease), NPY receptors (feeding behavior and obesity), etc. As arrestins play a role in many branches of signaling underlying life-or-death decisions in the cell, we are working on designing arrestin-based molecular tools that can prevent neurodegeneration. For more information, please visit the lab website. |
Hacker, Mallory | Deep Brain Stimulation and Parkinson's Disease Progression Dr. Hacker’s research focuses on understanding the effects of deep brain stimulation (DBS) in very early-stage Parkinson’s disease patients and studying objective methods to evaluate Parkinson’s disease progression. She also investigates the prevalence and impact of spasticity in the long-term care setting as well as ways to improve its screening, referral, and treatment. |
|
Hackett, Troy A. | Email | Auditory Neuroscience Dr. Hackett studies the organization of the auditory cortex combining anatomical and neurophysiological techniques. The major emphasis of the research is to assemble a model of auditory cortical processing through identification and characterization of the cortical areas involved in the processing of auditory information. These goals are accomplished by a combination of methods, including: 1) anatomical tracing to identify the neuronal circuits that comprise the auditory cortical and subcortical network; 2) neurochemical and genetic profiling of those circuits; 3) neurophysiological recording of neurons; and 5) comparative analyses of these features between model species. The long term goal of this research is to establish a comprehensive model of auditory processing in the human cerebral cortex. Research is supported by the National Institutes of Health (NIDCD). |
Hamm, Heidi E. | Email | Molecular Basis of Signaling Mechanisms Mediated by G Proteins My work is focused on understanding the molecular basis of signaling mechanisms mediated by G proteins, which are switch proteins. G proteins are normally active, but a receptor that has received a specific signal can activate G proteins, leading to changes in the activity of enzymes that produce second messengers such as cyclic AMP and calcium. The research in my laboratory is aimed at understanding how G proteins become activated by receptors, how they in turn activate effector enzymes, and how they turn off. We determined the sites of interaction between proteins using a method of decomposing the proteins into small synthetic peptides and determining which peptides blocked interaction sites. To understand the process more fully, we determined the atomic structure of the proteins in collaboration with the group of Paul Sigler. We used X-ray crystallography to solve the three-dimensional structures of G proteins in their inactive and activated forms. These high-resolution structural studies allowed us to postulate specific hypotheses regarding mechanisms of receptor: G protein interaction and activation, G protein subunit association- dissociation and effector activation. |
Han, Ye | Targeting TRIP8b for Novel Antidepressant Therapies Dr. Han’s current research focuses on developing novel antidepressant therapies based on the lab’s discovery that TRIP8b, an auxiliary subunit of HCN channels, regulates antidepressant-like behavior. She previously demonstrated that TRIP8b regulates HCN channel surface expression and subcellular localization by binding to pore forming subunits at two distinct locations. She subsequently examined the structure-function relationship of TRIP8b mediated HCN channel trafficking using viral mediated rescue experiments in TRIP8b knockout animals. She found that restoring TRIP8b expression to the hippocampi of TRIP8b knockout animals impaired the animal’s performance on screening tests for antidepressant efficacy. She also showed that reducing TRIP8b mediated HCN channel trafficking in the hippocampus improved the animal’s performance on the same tests. These results indicated that inhibiting TRIP8b mediated HCN channel trafficking is a promising target for novel antidepressant therapies. |
|
Harrison, Fiona | Email | Role of Vitamin C and its Transporters (SVCT1 and SVCT2) in Brain Function The focus of the Harrison lab is the role of vitamin C and its transporters (SVCT1 & SVCT2) in brain function during development and in neurodegenerative diseases. We use a wide variety of behavioral testing techniques along with a more molecular approach to understand the mechanisms behind the changes we observe. Current projects : Vitamin C in the brain in Alzheimer’s disease. We use transgenic mice that carry human mutant genes for APP and PSEN1 which cause Alzheimer’s disease and cross these with mice that have additional or only half of the normal copies of the SVCT2. With these models we can study the effects of a lifetime of low, normal and high levels of vitamin C in the brain on Alzheimer’s disease neuropathology and cognitive deficits. Vitamin C in the brain during development. We use a number of different mouse models including mice that express high or low levels of the SVCT2, mice that lack the SVCT1, and mice that cannot synthesize their own vitamin C and are supplemented with different amounts of it in their diet. Low vitamin C can cause scurvy in utero leading to death before or shortly after birth, and in less severe cases can causes permanent damage to brain function leading to permanent behavioral deficits. We aim to isolate the role of vitamin C in development and the mechanisms behind deficiency-induced damage. For more information, please visit the lab website. |
Hatzopoulos, Antonis | Email | Cardiovascular Progenitor Cells to Study Heart and Blood Vessel Development Our research focuses on cardiovascular progenitor cells as a model system to study heart and blood vessel development and as cell therapy tools in adult disease models. We have shown that in vitro expanded embryonic endothelial progenitor cells form blood vessels after transplantation in the developing embryo. In adult disease models, we found that vascular progenitor cells are originally recruited to sites of angiogenesis by endothelial P-selectin. In mouse models of multiple tumors, we demonstrated that the progenitor cells home to hypoxic metastases with high VEGF expression, but spare well-vascularized tumors and normal organs. Based on these findings, we used the cells as a??Trojan horsesa?? to deliver toxic agents directly to the tumor tissue killing malignant cells and blocking tumor growth. Exploring further the specific accumulation of progenitor cells to ischemic sites in vivo, we found that transplantation of progenitor cells under acute (heart) or chronic ischemia (hindlimb) enhances vascularization and improves tissue recovery. Our laboratory currently investigates the mechanisms of cardiac cell specification during embryonic stem cell differentiation and the biology of progenitor cells after ischemic injury in the adult heart. We found that canonical wnt signaling is activated during scar formation and is a critical pathway in the activation of endothelial cells and myofibroblasts after experimental myocardial infarction. We have recently discovered that the BMP antagonist PRDC is an integral component of the regulatory network that fine tunes both Bmp4 expression and signaling activity during heart development, providing novel insights into the molecular basis of congenital cardiac defects. We currently investigate the role of PRDC in cardiac repair after ischemic injury. Our laboratory is a member of the Cardiovascular Cell Therapy Research Network (CCTRN) and the Progenitor Cell Biology Consortium (PCBC), which have been established by NHLBI in 2007 and 2009, respectively. |
Heckers, Stephan | Email | Early Psychosis We are interested in the classification of schizophrenia, schizoaffective disorder and psychotic bipolar disorder. We aim to improve the reliability and validity of the available diagnoses and work towards a more personalized approach in the diagnosis and treatment of psychotic disorders. For more information, please visit the lab website. |
Herculano-Houzel, Suzana | Email | Dr. Herculano is Interested in comparative neuroanatomy, cellular composition of brains, brain morphology, brain evolution, metabolic cost of body and brain, sleep requirement across species, feeding time, and really interested in how all of these are tied together. Writes about neuroscience and science in general for the public; recently published The Human Advantage: A New Understanding of How Our Brain Became Remarkable (MIT Press, 2016). A TED talk on how the human brain compares to others and how it came to have the largest number of cortical neurons of any brain can be seen here. |
Hinton, Jr., Antentor O | Alterations of Molecular Mechanisms in Pathophysiological Diseases The Hinton Lab utilizes SBF-SEM and FIB-SEM to investigate the molecular mechanisms that regulate molecule transfer and morphological changes between the mitochondria and the endoplasmic reticulum. They explore how these mechanisms are altered during pathophysiological states such as diabetes, obesity, cardiovascular disease, neurodegenerative diseases, neurogenic salt-sensitive hypertension, and neurogenic stress-induced hypertension. For more information, please visit the lab website. |
|
Hoffman, Kari | Email | What are the neural population dynamics that give rise to experience-guided perception? How are memories manifest in brain activity? Can we intercept or enhance this activity? We’re interested in the neural mechanisms underlying perception and memory formation. We use multi-channel recording and stimulation techniques applied during behavioral tasks, along with time- and frequency-domain analysis techniques. The goal is to understand neural phenomena such as the cellular basis of oscillatory brain activity and then to determine the role these phenomena may play in adaptive behaviors such as memory-guided exploration of the environment. For more information, please visit the lab website. |
Hohman, Timothy J. | Email | Molecular Drivers of Resilience in Alzheimer's Disease Dr. Hohman's programmatic research focuses on understanding how certain individuals are able to accumulate Alzheimer's disease neuropathology without showing clinical symptoms of the disease. He has identified molecular drivers of such resilience through genomic and proteomic analyses leveraging neuroimaging and neuropathology endophenotypes. Dr. Hohman's team also integrates these diverse data types into a precision medicine approach, focusing on characterizing the best predictors of risk and resilience given an individual's age, sex, genetic, and neuropathological context. Through transdisciplinary collaboration, Dr. Hohman's team seeks to facilitate a more rapid move from genomic discovery to therapeutic development. |
Huang, Anna | Characterizing Thalamocortical Abnormalities in Schizophrenia Dr. Huang’s research program investigates the mechanisms by which known thalamocortical network abnormality relates to cognitive impairment in Schizophrenia. The focus of her research at Vanderbilt has been on characterizing thalamocortical system abnormalities in Schizophrenia using structural, resting and task state fMRI. The thalamus is a key component of multiple networks that support cognitive functions, especially attention and decision making. Using a combination of structural and functional neuroimaging methods in combination with behavioral tasks and computational modeling, she is interested in developing a mechanistic understanding of how the thalamus and thalamocortical networks contribute to cognition and how abnormalities in this network relate to cognitive and behavioral disturbances in Schizophrenia. |
|
Humphreys, Kathryn | Email | Infant Mental Health Dr. Humphreys trained as a clinical psychologist and has expertise in infant mental health. Her work centers on identifying pathways to the development of psychopathology. Given the importance of early experience and plasticity of the developing brain, she focuses on caregiving experiences in early life, with a particular interest in identifying targets for prevention and intervention programs. Her research includes tools from neuroscience, including magnetic resonance imaging, in infants, children, and adults, as well as biological markers of aging and health. For more information, please visit the lab website. |
Ihrie, Rebecca | Email | Proliferation and Fate in Stem Cells and Brain Tumors We are interested in how extracellular signals are integrated within stem cells to direct self-renewal, proliferation, and the generation of committed progeny. Fast-dividing progenitor cells share many molecular features with cancer cells, and the pathways regulating neural stem cells are frequently disrupted or altered in brain tumors. The laboratory focuses on a unique stem cell niche in the brain: the subventricular zone (SVZ). We use both in vitro and in vivo methods to perturb specific signaling pathways in neural progenitors and brain tumor cells and measure alterations in stem cell potential, proliferation, and differentiation. Understanding how the long-lived neural stem cells in this region persist throughout life will provide significant insight into the properties of progenitor-like cells in brain tumors. For more information, please visit the lab website. |
Irish, Jonathan | Email | Cell Signaling in Healthy Human Tissues and in Diseases Our lab studies how signaling controls cell identity in healthy human tissues and in diseases, including cancer and immune disorders. Our neuroscience research projects include: 1. quantitative analysis of neural differentiation using single cell measurements of proteins and signaling molecules, 2. dissecting the unique immunology of the human brain stem cell niche in health and disease, 3. creating computational tools to automatically identify normal and malignant neural lineage cell subsets, 4. screening to identify compounds with novel functions in regulating neural and immune cell identity. The lab’s approach emphasizes combined use of bench and computational single cell techniques. Dr. Irish trained at Stanford University where he created a new approach to measure signaling in human cells and applied new bench and computational tools to stratify patient clinical risks based on cell signaling biology. In the last 5 years, the Irish lab at Vanderbilt has published >40 peer-reviewed manuscripts dissecting cell signaling interactions and creating machine learning tools to quantify cell identity. For more information, please visit the lab website. |
Isaacs, David | Assessing Non-Motor Manifestations of Movement Disorders Using Event-Related Potentials (EEG) Dr. Isaacs’ research interests primarily focus on the following: 1) Tourette syndrome, 2) non-motor manifestations of movement disorders; 3) translational neurophysiologic biomarkers; and 4) neuromodulation. He oversees longitudinal studies assessing non-motor manifestations of Huntington’s disease, Parkinson’s disease, and Tourette syndrome; each of these projects are actively enrolling subjects. He is employing event-related potentials and quantitative electroencephalography to detect novel brain-based indicators of sensory dysfunction in Tourette syndrome, with the ultimate intent to identify and validate translational neurophysiologic biomarkers. |
|
Jackson, James C. | Depression, PTSD, and Cognitive Functioning in Survivors of Critical Illness James Jackson, PsyD is the Assistant Director of The ICU Recovery Center at Vanderbilt (one of the only clinics in the United States devoted to treating survivors of critical illness), a Research Associate Professor, and the lead psychologist for the CIBS Center at the Vanderbilt University School of Medicine. He earned his PsyD degree in Clinical Psychology at Biola University in July 2001, completed a psychology residency at the Vanderbilt/VA Psychology Consortium, and was a VA Clinical Research Center of Excellence (CRCOE) Fellow and a Visiting Scholar at the Oliver Zangwill Center in Ely, England, where he received extensive training in neuropsychological rehabilitation. A licensed psychologist and active researcher and clinician, he is one of the world’s leading authorities on depression, PTSD, and cognitive functioning in survivors of critical illness. He has authored over 90 scientific publications in leading scientific journals and has been interviewed in articles in the New York Times, the Washington Post, the Boston Globe, and many other prominent media venues. Dr. Jackson is a popular lecturer and has spoken at academic meetings, major universities and medical centers around the globe. |
|
Jackson, Lauren Parker | Email | Membrane Trafficking Pathways All eukaryotic cells must solve a logistical challenge by moving transmembrane proteins and lipids between different membrane-bound organelles, much like Fedex moves packages between different hubs. We investigate these fundamental biological processes, broadly referred to as membrane trafficking pathways. Using a range of techniques in the modern life sciences, we explore how cells initiate and regulate these pathways that are so critical to human health and disease. We aim to identify unknown components and to characterize the molecular mechanisms of ill-defined pathways. Furthermore, we hope to provide insight into human diseases, including neurological disorders and cancers, that are caused by mutations in or loss of vital trafficking proteins. For more information, please visit the lab website. |
Jacobson, David | Email | Understanding Ion Channels of Pancreatic Islet Cells and DRG Neurons for Diabetes and Pain Therapies The focus of the Jacobson lab is on understanding how ion channels of pancreatic islet-cells and dorsal root ganglion (DRG) sensory neurons influence the pathogenesis of diabetes and pain. Ion channels control Ca2+ entry into islet-cells, which is required for hormone secretion that regulates blood glucose homeostasis. In DRG sensory neurons electrical excitability and Ca2+ influx regulates pain perception. Calcium influx into islets and DRG neurons becomes perturbed in patients with diabetes and chronic pain respectively. However, the mechanism(s) responsible for perturbed Ca2+ homeostasis in these cells have not been defined. Therefore, the goal of the Jacobson lab is to determine if ion channels that modulate islet hormone secretion and DRG neuron nociception can be utilized as therapeutic targets for treating diabetes and pain. For more information, please visit the lab website. |
Jan, Taha | Diagnosis and Treatment of Hearing and Balance Impairment We study the mammalian inner ear by answering fundamental questions of development and regeneration and performing translational research using disease models of hearing loss. Our research aims to transform the understanding of hearing loss and identify the mechanisms that can be targeted for diagnosis and treatment of patients suffering from hearing and balance impairment. For more information, please visit the lab website. |
|
Jansen, E. Duco | Email | Biophotonics Dr. Jansen’s lab is focused on developing lasers and other optical technologies for use in medicine and biomedical research. In particular our work on optical stimulation of excitable tissues has received international attention. In this effort we use small infrared laser pulses as a high precision alternative to electrical stimulation to induce action potentials in nerves, neurons and other excitable tissues. Efforts include the investigation of the underlying mechanisms of this phenomenon, development of novel laser devices including implantable optical stimulators, development of laser-based prosthetic devices using the optical technology as the primary high precision neural interface. Active collaborations are in place with the Department of Otolaryngology at Northwestern University, the FES Center at Case Western University, the Neuroscience Dept at the Erasmus University in Rotterdam (The Netherlands) and Lockheed-Martin-Aculight (Bothell, WA). |
Jaser, Sarah | Email | Risk and Protective Factors in Children and Adolescents with Type 1 Diabetes Dr. Jaser studies risk and protective factors in children and adolescents with type 1 diabetes. She has demonstrated the effects of adolescent coping, maternal adjustment, and parenting on adolescents’ glycemic control and quality of life. She is currently developing and testing interventions to improve outcomes in youth with diabetes and their families. These include a program to help mothers cope effectively with the stress of parenting adolescents with type 1 diabetes, a positive psychology intervention to improve adolescents adherence, and sleep-promoting programs for children and adolescents with type 1 diabetes. |
Jefferson, Angela | Email | Cognitive Aging and Mild Cognitive Impairment Dr. Jefferson’s interdisciplinary programmatic research focuses on discovering underlying mechanisms for unhealthy cognitive changes in older adults, such as mild cognitive impairment and Alzheimer’s disease, for the purpose of informing prevention and therapeutic targets. Dr. Jefferson’s research team has a particular interest in cardiovascular and cerebrovascular health associated with cognitive changes, as many factors associated with vascular health are modifiable and ideal for prevention or therapeutic intervention. Specific areas of interest include (1) examining relations between cardiac function and blood flow to the brain and its impact on brain aging and Alzheimer’s disease pathophysiology; (2) researching alterations and diseases of vascular biology, such as inflammation and hypertension, in connection with brain aging and Alzheimer’s disease pathophysiology; and (3) understanding the etiology of cerebrovascular changes, such as white matter alterations, and relations between white matter degradation and abnormal brain aging. Dr. Jefferson’s research program also focuses on discovering and implementing early detection methods for abnormal cognitive aging among older adults and refining the diagnostic profile for mild cognitive impairment. For more information, please visit the lab website. |
Johnson, Carl H. | Email | Cellular/Molecular Biology of Biological Clocks My lab studies daily biological clocks in a variety of organisms, and we use luminescence as a tool to monitor these clocks. In mammals, our lab uses transgenic mice and mammalian fibroblasts expressing different kinds of light-emitting enzymes (“luciferases”) to monitor rhythms of gene expression and calcium levels by the rhythmic glow of the reporter luciferase. Therefore, our lab uses luminescence as a tool to monitor circadian rhythms in the brain and in cell cultures. These studies are directed towards understanding the calcium signal transduction pathway to the core clock and the role of clock genes in the fundamental mammalian clockwork. We have recently extended our studies to the genetics of the human biological clock. We are examining clock gene polymorphisms in human populations to determine how the neurogenetics of the biological clock affects our ability to adapt to shiftwork cycles and how it caninfluence mental health (esp. depression). My laboratory also studies rhythmic behavior in bacteria (specifically, blue-green algae). To study the clock mechanism in cyanobacteria, we used a bacterial luciferase reporter as a genetic marker in order to find other genes that control clock function. My lab, in collaboration with labs in Japan and Texas A&M, has identified three bacterial genes that are essential for biological clock function. In collaboration with Drs. Martin Egli and Phoebe Stewart at Vanderbilt, we study the structural biology of these bacterial clock proteins. The three purified proteins exhibit circadian oscillations in a test tube! Therefore, the Johnson/Egli/Stewart labs are taking advantage of our past structural work to analyze and explain how these proteins can oscillate in vitro. Furthermore, my lab is using clock mutants of the bacteria to provide the first rigorous evidence for the adaptive significance of circadian clocks in fitness. Finally, we developed a new method for measuring protein-protein interactions based upon the resonance energy between a luciferase and a fluorescent protein. This method is called Bioluminescence Resonance Energy Transfer, or BRET. This technique has allowed the development of novel reporters for intracellular calcium and hydrogen ions. A bright future is envisioned for BRET. For more information, please visit the lab website. |
Jones, Carrie | Email | PET and Functional MRI, to Explore the Underlying Mechanisms of Novel Ligands Targeting Different G Protein-Coupled Receptors (GPCR) and Transporters within the CNS and the Implications of these Effects on Different Disease States, Most Notably Schizophrenia Dr. Jones’ In Vivo Pharmacology team is dedicated to utilizing translational approaches, including assessment of changes in behavior, neurochemistry and imaging endpoints such as PET and functional MRI, to explore the underlying mechanisms of novel ligands targeting different G protein-coupled receptors (GPCR) and transporters within the CNS and the implications of these effects on different disease states, most notably schizophrenia. For more information, please visit our lab website. |
Jones, Robin | Email | Pathogenesis, Diagnosis, and Treatment of Developmental Stuttering Dr. Jones' research focuses on speech-language, cognitive and emotional contributions to the pathogenesis of developmental stuttering as well as the translation of this work to diagnosis and treatment. At present, the central questions of his research are: what are the objectively identifiable processes that contribute to the early onset of stuttering and do these processes predict which children are likely to recover versus develop persistent stuttering? In order to address these issues, his lab uses a diverse set of approaches and methods including caregiver report, behavioral, and psychophysiological measures to link speech-language, cognitive, and emotional processes to the onset and/or development of childhood stuttering. Dr. Jones is also a clinician and highly motivated to apply the findings of this current work to issues that relate to and inform diagnostic and treatment protocols. This work represents an interdisciplinary effort of speech-language pathologists, developmental psychologists, neuroscientists, and basic and applied researchers. |
Jordan, Lori | Email | Hemorrhagic and Ischemic Stroke in Children Lori Jordan MD, PhD is Professor of Pediatrics, Neurology and Radiology. As a pediatric neurologist, Dr. Jordan’s clinical research program focuses on stroke in children and brain injury in children with chronic illnesses. Children who suffer a stroke in childhood have decades to live with their neurological deficits, and typical motor and cognitive development is often disrupted. Current research focuses on the neurological sequelae of sickle cell disease in children and adults, particularly using advanced MRI methods to understand cerebral hemodynamic differences that may predispose to stroke and silent cerebral infarction. A newer line of research includes the neurological and cognitive challenges in children with chronic illness, particularly children at increased risk for brain injury including those with type 1 diabetes and congenital heart disease. |
Kaas, Garrett | Email | Functionality and Causality of Genetic Variants Associated with Neurological Disorders Garrett Kaas, PhD, is a Research Assistant Professor in the Department of Medicine at Vanderbilt University Medical Center, specializing in neuroepigenetics. Dr. Kaas earned his PhD from the University of Iowa. His research interests largely focus on how epigenetic mechanisms regulating DNA and RNA contribute to nervous system function. His recent efforts have focused on the role that Ten-Eleven Translocation (TET) 1 methylcytosine dioxygenase gene isoforms play in regulating neuronal gene expression, physiology and cognition in the mammalian brain. Now in the lab of Dr. Eric Gamazon, Dr. Kaas leverages his expertise in neuroscience and epigenetics to investigate the functionality and causality of genetic variants associated with neurological disorders. |
Kaas, Jon H. | Email | Brain Organization, Development, Evolution, and Plasticity Our interests are in how sensory and motor systems are organized, process information, and relate to behavior. Because we are especially interested in how the human brain is organized, much of our research is on primates, including human brain tissue. Our approaches are anatomical, histochemical, and electrophysiological. We are also quite interested in how these systems recover from injury and adjust to sensory change. We work on visual, somatosensory, auditory and motor systems. Some of our research is on the development of these systems. Other research is comparative, in an effort to understand how mammalian brains vary, and how complex brain systems might have evolved. |
Kaczkurkin, Antonia | Email | Neurobiological Mechanisms that Contribute to the Etiology of Internalizing Disorders Dr. Kaczkurkin’s research focuses on understanding the neurobiological mechanisms that contribute to the etiology of internalizing disorders. She integrates multimodal measures such as functional magnetic resonance imaging (fMRI), cerebral blood flow, brain anatomy, psychophysiology (e.g., electroencephalography (EEG), startle blink, skin conductance), and behavior to develop a comprehensive understanding of the basic mechanisms underlying anxiety and depressive disorders. Her research aims to: 1) Investigate abnormal brain anatomy and functioning in anxiety and depressive disorders. 2) Understand the neurobiological heterogeneity that exists within internalizing symptoms. 3) Apply our knowledge about these neurobiological differences to improve treatment outcomes. For more information, please visit the lab website. |
Kang, Jing-Qiong (Katty) | Email | Understanding the Role of GABAergic Signaling in Disease Conditions The Kang Laboratory is interested in understanding the role of GABAergic signaling in disease conditions as well as in normal brain development. Currently, lab staff members are investigating the molecular pathophysiology of genetic variations in GABAA receptor subunit genes and two common pediatric syndromes: epilepsy and autism. In addition, the lab is interested in identifying common mechanisms overlapping severe genetic epilepsy syndromes and neurodegeneration. They are trying to understand why a single nucleotide change in a particular GABAA receptor subunit gene could give rise to severe epilepsy, impaired social and learning abilities as well as other comorbidities which could define the whole life of a child. They use in vitro approaches to understand the details of how a mutant GABAA receptor subunit gene and protein behaves and the adaptive responses of the host cell. They use in vivo approaches, such as genetically modified mouse models, to understand the changes at more physiological and systematic levels. Lab staffers aim to dissect out the detailed changes at gene, protein, cell, neural circuitry, and behavioral levels for given GABAA subunit gene mutations. Their final goal is to identify mechanism-based therapies for those who suffer from these disorders in order to improve patients’ treatments and life outcomes. |
Kavalali, Ege | Mechanisms of Neurotransmission and Synaptic Signaling in the Central Nervous System Dr. Kavalalı studies mechanisms of neurotransmission and synaptic signaling in the central nervous system using electrical and optical recording techniques as well as molecular tools. His group focuses on the molecular basis and functional consequences of heterogeneity among synaptic vesicle recycling pathways present within individual synapses. In particular, his work has uncovered the role and underlying mechanisms of spontaneous neurotransmitter release that holds it apart mechanistically and functionally from evoked neurotransmission. These studies gave rise to the hypothesis that spontaneous neurotransmission acts as an autonomous neuronal signaling pathway independent of action potential-evoked synaptic transmission. In addition, Dr. Kavalalı and colleagues have identified spontaneous neurotransmission-dependent signal transduction mechanisms that are required to trigger rapid antidepressant action. For more information, please visit the lab website. |
|
Kaverina, Irina | Email | Microtubules Microtubules (MTs), 25-nm self-assembling polymers serve as highways for organelles and molecular transport within a cell. During cell division, MTs are arranged into the mitotic spindle and drive chromosome segregation. In interphase cells, MT network organization and modes of MT-dependent transport are much more variable, reflecting functional diversity of cells and tissues. For example, MT functions include secretory trafficking, organelle positioning, and control of site-specific activities (e.g. actin polymerization), thereby defining cell shape and physiology. Paradoxically, our understanding of interphase MT networks is by far less advanced that the understanding of mitotic machinery. Kaverina Lab at Vanderbilt aims to close this gap in knowledge. We study how complex MT networks are arranged, and how specialized MT arrays support distinct cellular tasks. The lab is interested in: 1. Establishing principles of MT network architecture. An important determinant of MT network organization is location and activity of MT-organizing centers (MTOCs), where MTs are nucleated. We have recently found that the Golgi complex is capable to serve as MTOC, defining MT organization in multiple cell types. Elucidating the molecular and functional properties of Golgi-derived MTs is one of our main goals. 2. Understanding how variations in MT networks are translated into specifics of cellular architecture and physiology. We are particularly interested in cell types which define major human diseases: we study MT-dependent regulation of (1) insulin secretion from pancreatic beta cells (diabetes), (2) the Golgi in motile and proliferating cells (development and cancer), (3) the actin cytoskeleton in vascular smooth muscle cells (cardiovascular disease). For more information, please visit the lab website. |
Showing 1 to 100 of 203 entries