Chapter 28 Biomolecules: Heterocycles and Nucleic Acids

Heterocycles: cyclic organic compounds that contain rings atoms other than carbon (N,S,O are the most common).

28.1 Five-Membered Unsaturated Heterocycles (please read)
28.2 Structures of Pyrrole, Furan, and Thiophene (please read)

28.3 Electrophilic Substitution Reactions of Pyrrole, Furan, and Thiophene (please read)
28.4 Pyridine, a Six-Membered Heterocycle (please read)
28.5 Electrophilic Substitution of Pyridine (please read)
28.6 Nucleophilic Substitution of Pyridine (please read)
28.7 Fused-Ring Heterocycles (please read)

These sections contain some important concepts that were covered previously.

28.8 Nucleic Acids and Nucleotides

Nucleic acids are the third class of biopolymers (polysaccharides and proteins being the others)

Two major classes of nucleic acids
- deoxyribonucleic acid (DNA): carrier of genetic information
- ribonucleic acid (RNA): an intermediate in the expression of genetic information and other diverse roles

The Central Dogma (F. Crick):

\[
\text{DNA} \rightarrow \text{mRNA} \rightarrow \text{Protein} \quad \text{(genome) \rightarrow (proteome)}
\]

The monomeric units for nucleic acids are nucleotides

Nucleotides are made up of three structural subunits
1. Sugar: ribose in RNA, 2-deoxyribose in DNA
2. Heterocyclic base
3. Phosphate
Nucleoside, nucleotides and nucleic acids

The chemical linkage between monomer units in nucleic acids is a phosphodiester.

The sugar: based on the furanose form D-ribose; ribose for RNA; 2-deoxyribose for DNA.

The heterocyclic base; there are five common bases for nucleic acids.

<table>
<thead>
<tr>
<th>Purine</th>
<th>Adenine (A) DNA/RNA</th>
<th>Guanine (G) DNA/RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cytosine (C) DNA/RNA</td>
<td>thymine (T) DNA</td>
</tr>
<tr>
<td></td>
<td>uracil (U) RNA</td>
<td></td>
</tr>
</tbody>
</table>
Nucleosides: sugar + base
ribo nucleosides or 2'-deoxy ribonucleosides

RNA: X=OH, adenosine (A)
DNA: X=H, 2'-deoxyadenosine (dA)

RNA: X=OH, cytidine (C)
DNA: X=H, 2'-deoxy cytidine (dC)

RNA: X=OH, guanosine (G)
DNA: X=H, 2'-deoxy guanosine (dG)

RNA: R=H, uridine (U)
DNA: R=H, 2'-deoxy uridine (dU)

Nucleotides: nucleoside + phosphate

ribonucleoside (X=OH)
deoxyribonucleoside (X=H)

28.9 Structure of nucleic acids:
The chemical linkage between nucleotide units in nucleic acids is a phosphodiester, which connects the 5'-hydroxyl group of one nucleotide to the 3'-hydroxyl group of the next.

DNA is negatively charged
DNA sequences are written from left to right from the 5’ to 3’

5’-ATCGCAT-3’ or 5’-d(ATCGCAT)-3’

28.10 Base Pairing in DNA: The Watson–Crick Model

Chargaff’s Rule: the number of A = T and G = C in DNA

Two polynucleotide strands, running in opposite directions (anti-parallel) and coiled around each other in a **double helix**.

The strands are held together by complementary hydrogen-bonding between specific pairs of bases.

1962 Nobel Prize in Medicine: F. H. C. Crick, J. D. Watson, Maurice F. H. Wilkins, "for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material." 424

Anti-parallel, complementary hydrogen-bonding of DNA base pairs

Antiparallel C-G Pair

![Antiparallel C-G Pair](image)

Antiparallel T-A Pair

![Antiparallel T-A Pair](image)
DNA double helix

- One helical turn: 34 Å
- Major groove: 12 Å
- Minor groove: 6 Å

Backbone: deoxyribose and phosphodiester linkage

Bases:
- Cytidine
- Guanosine
- Thymidine
- Adenosine

DNA Grooves
28.11 Nucleic Acids and Heredity
The Central Dogma (F. Crick):

DNA replication \[\rightarrow\] DNA transcription \[\rightarrow\] mRNA translation \[\rightarrow\] Protein (proteome)

Expression and transfer of genetic information:

Replication: process by which DNA is copied with very high fidelity.

Transcription: process by which the DNA genetic code is read and transferred to messenger RNA (mRNA). This is an intermediate step in protein expression.

Translation: The process by which the genetic code is converted to a protein, the end product of gene expression.

The DNA sequence codes for the mRNA sequence, which codes for the protein sequence.

28.12 Replication of DNA: DNA is replicated by the coordinated efforts of a number of proteins and enzymes.

Each cell contains about two meters of DNA. The DNA must be "packaged" into the cell nucleus by super-coiling and knotting.

For replication, DNA must be unknotted, uncoiled and the double helix unwound.

- **Topoisomerase**: Enzyme that unknits and uncoils DNA
- **Helicase**: Protein that unwinds the DNA double helix.
- **DNA polymerase**: Enzyme replicates DNA using each strand as a template for the newly synthesized strand.

DNA replication is *semi-conservative*: Each new strand of DNA contains one parental (old, template) strand and one daughter (newly synthesized) strand.
Unwinding of DNA by helicases expose the DNA bases (replication fork) so that replication can take place leading strand DNA polymerase δ

DNA replication

Lagging strand DNA polymerase ε

3’ → 5’

Old 5’
New 5’

DNA Polymerase: the new strand is replicated from the 5’ → 3’ (start from the 3’-end of the template) DNA polymerases are Mg²⁺ ion dependent The deoxynucleotide 5’-triphosphate (dNTP) is the reagent for nucleotide incorporation

3’-hydroxyl group of the growing DNA strand acts as a nucleophile and attacks the α-phosphorus atom of the dNTP.
Replication of the leading strand occurs continuously in the 5' → 3' direction of the new strand. Replication of the lagging strand occurs discontinuously. Short DNA fragments are initially synthesized and then ligated together. DNA ligase catalyzes the formation of the phosphodiester bond between pieces of DNA.

DNA replication occurs with very high fidelity:
Most DNA polymerases have high intrinsic fidelity
Many DNA polymerases have “proof-reading” (exonuclease) activity
Mismatch repair proteins seek out and repair base-pair mismatches due to unfaithful replication

28.13 Structure and Synthesis of RNA: Transcription
RNA contains ribose rather than 2-deoxyribose and uracil rather than thymine
There are three major kinds of RNA
message RNA (mRNA):
ribosomal RNA (rRNA)
transfer RNA (tRNA)
DNA is found in the cell nucleus and mitochondria; RNA is more disperse in the cell.
Transcription: only one of the DNA strands is copied (coding or antisense strand). It sequence is converted to the complementary sequence in mRNA (template or sense strand), which codes for the amino acid sequence of a protein (or peptide).

28.14 RNA and Protein Biosynthesis: Translation
- proteins are synthesized in the cytoplasm on ribosomes.
- mRNA is the template for protein biosynthesis.
- a three base segment of mRNA (codon) codes for an amino acid.

The "anticodon" region of tRNA is complementary to the mRNA codon sequence. The t-RNA carries an amino acid on the 3'-hydroxyl (aminoacyl t-RNA) and the ribosome catalyzes amide bond formation. Although single-stranded, the are complementary sequences within tRNA that give it a defined conformation.
Ribosomal protein synthesis

DNA sequencing

Maxam-Gilbert: relies on reagents that react with a specific DNA base that can subsequently give rise to a sequence-specific cleavage of DNA.

Sanger: Enzymatic replication of the DNA fragment to be sequenced with DNA polymerase, Mg$^{2+}$, and dideoxynucleotides triphosphate (ddNTP) that truncate DNA replication.

Restriction endonucleases: Bacterial enzymes that cleave DNA at specific sequences.

- EcoR I: 5’-d(G-A-A-T-T-C)-3’
 3’-d(C-T-T-A-A-G)-5’
- Bam HI: 5’-d(G-G-A-T-C-C)-3’
 3’-d(C-C-T-A-G-G)-5’
Sanger Sequencing dideoxynucleotides triphosphate (ddNTP)

When a ddNTP is incorporated elongation of the primer is terminated

The ddNTP is specifically incorporated opposite its complementary nucleotide base

Sanger Sequencing

Larger fragments

Smaller fragments

438

Anti-Viral Nucleosides

439
Automated Sanger Sequencing with fluorescent ddNTP's

Excitation: \(~ 490 \text{ nM}\), Emission: ddT= 526 nm, ddC= 519 nm, ddA= 512 nm, ddG= 505 nm

Sanger sequencing using fluorescent ddNTP's: terminated DNA strands are separated by capillary electrophoresis, detected and identified by their fluorescence emission

Sequencing on a “chip” (Lagniappe)

Spatially addressable: 8-mer chip: 65,536 different sequences
12-mer chip: 1,677,216 different sequences

DNA fragment → DNA–fluorophore

Place DNA on the chip, then wash away non-specific hybridization after 1-10 hrs.
Raise temperature and “melt” away partially hybridized sequences.

3′-ACGGTGCG- CGGTGCGA
GGTGCGAG GTGCGAGA
TGCGAGAA GCGAGAAT etc

3′-ACGGTGCAGAAT---5′ (from the chip)
5′-TGCCACGCTCTTA---3′
28.16 DNA Synthesis: short segments of DNA can be efficiently by automated, solid-phase methods.

Solid support: controlled pore glass (silica)
linked to the 3'-hydroxyl group of the first nucleotide
solid phase DNA synthesis is from 3'→5', which is the opposite direction from nature.

Protected nucleotide reagents:
5’-protecting group: 4,4’-dimethoxytrityl (trityl is a triphenylmethyl group), abbreviated DMT

The base amino groups of dA, dG and dC must be protected, usually as an amides. The base of T does not require further protection.

The 3’-phosphorous group: phosphoramidite
Automated, solid-phase DNA synthesis

28.17 Polymerase Chain Reaction (PCR): method for amplifying DNA using DNA polymerase and cycling temperature

Heat stable DNA Polymerases (from *archaea*):
Taq: thermophilic bacteria (hot springs)- no proof reading
Pfu: geothermic vent bacteria- proof reading

Mg$^{2+}$
two Primer DNA strands (synthetic, large excess)
one sense primer and one antisense primer
one Template DNA strand
dNTP’s

Kary B. Mullis, 1993 Nobel Prize in Chemistry for his invention of the polymerase chain reaction (PCR) method.
A typical PCR temperature cycle

Denaturation: 94 °C 0.5 - 1 min

Annealing: 55-68 °C 0.5 - 1 min 5 °C below the T_m of the primer

Extension: 72 °C 1 min + 1 min per Kb of DNA

Number of cycles: 25 - 35

Final extension: 72 °C 10 min

1 x 2 = 2
2 x 2 = 4
x 2 = 8
x 2 = 16
x 2 = 32
x 2 = 64
x 2 = 128
x 2 = 256
x 2 = 512
x 2 = 1,024
x 2 = 2,048
x 2 = 4,096
x 2 = 8,192
x 2 = 16,384
x 2 = 32,768
x 2 = 65,536
x 2 = 131,072
x 2 = 262,144
x 2 = 524,288
x 2 = 1,048,576
x 2 = 2,097,152
x 2 = 4,194,304
In principle, over one million copies per original, can be obtained after just twenty cycles

Polymerase Chain Reaction

For a PCR animation go to:
http://www.blc.arizona.edu/INTERACTIVE/lac-procident3.dna/pcr.html
http://users.vu.nl/~avierstr/principles/pcrani.html