Peripheral T follicular helper cell function during HIV Infection

Wandi Zhu

Research Mentor: Dr. Spyros Kalams
T follicular Helper Cells (Tfh)

- CD4 T helper cell subset
- Characterized by PD-1, CD40L, ICOS and CXCR5
 - IL-21 secretion
- Reside in lymph node germinal centers
- Peripheral Tfh (pTfh)
- Activate B cells
 - Differentiate into plasmablasts

Vinuesa et. al (2005)
B Cell Differentiation

Antigen encounter

2nd Antigen encounter

Activated mature B cell → Short-lived plasmablast

Antibody Secretion

Moir, S. and A.S. Fauci (2009)
HIV

- Human immunodeficiency virus
- CD4+ and CD8+ T cells exhaustion
 - Decrease effector function
 - Increase inhibitory receptor expression
- B cell dysregulation
 - Hypergammaglobulinemia
- pTfh role in HIV-1 infection
Purpose

• Overall Goal: Determine the relationship between pTfh help and the maintenance of B cell responses in chronic HIV-1 infection

• Goal of Project: Develop a sensitive assay to measure ability of T helper cells to induce the differentiation of B cells into antibody-secreting plasmablasts

• Methods:
 – 5 HIV- controls and HIV+ individuals
 – Readout of T cell help = plasmablast frequency and antibody production
Co-Culture Conditions

Peripheral blood mononuclear cells → Magnetic Beads

- CD19+ B cells
- CD4+ T cells

CD4+ T cells and CD19+ B cells → Incubate for 7 days

Stimulants

Collect supernatant

Flow Cytometry

Plasmablasts

ELISA

IgG Antibody
Stimulants

CD4 T cells and CD19+ B cells

Positive Control: sCD40L+ IL-21 (B cell stim)

Antigen-Specific: Tetanus toxoid (T cell stim)

HIV-1 Antigen: SF162 gp140 trimer (T cell stim)
Gating Scheme for Plasmablasts

Lymphocytes

Size

Granularity

CD3

Viable CD3- Cells

Viability

Viable CD3+

Viable CD3-

CD27 vs CD38

CD20

CD19 vs CD20

CD19

non B cell

CD19+CD20

CD19+CD20-

non B cell

CD27

Plasmablast

Unstimulated

0.13%

Stimulated

20.0%

CD27 PE-A

CD38 PE-Cy7-A

CD38 PE-Cy7-A
Plasmablast Frequency

![Graph showing the change in percentage of PLBs out of total B cells in HIV- and HIV+ individuals under sCD40L + IL-21 stimulation.]

\[\text{sCD40L + IL-21} \]

\[
\begin{align*}
\% \text{ Change of PBs out of total B cells} \\
\text{stimulated - unstimulated}
\end{align*}
\]

- HIV-: [Data points and bars indicating change]
- HIV+: [Data points and bars indicating change]

\(p = 0.155 \)

*: paired t-test between response to stimulation compared to unstim, \(p < 0.05 \)

NS: not significant

![Graph showing the change in percentage of PLBs out of total B cells in HIV- and HIV+ individuals under Tetanus toxoid stimulation.]

\[\text{Tetanus toxoid} \]

- HIV-: [Data points and bars indicating change]
- HIV+: [Data points and bars indicating change]

\(P = 0.421 \)

![Graph showing the change in percentage of PLBs out of total B cells in HIV- and HIV+ individuals under SF162 gp140 trimer stimulation.]

\[\text{SF162 gp140 trimer} \]

- HIV-: [Data points and bars indicating change]
- HIV+: [Data points and bars indicating change]

\(p = 0.047 \)

NS: not significant
*: paired t-test between response to stimulation compared to unstim, p<0.05
NS: not significant
Summary

1. Developed two assays to measure T cell help to B cells by potent stimulation
2. Detected recall responses to Tetanus toxoid in HIV- and HIV+ subjects
3. Detected HIV-specific responses in HIV+ subjects that were not present in HIV- subjects
CD4+ T cells

Incubate for 7 days with sCD40L and IL-21

Flow Cytometry

Cell Sorter

pTfh (CXCR5+)

Non-pTfh (CXCR5-)

CXCR5+ and CD19+ B cells

Flow Cytometry

Plasmablasts

ELISA

IgG Antibody
CXCR5 +/- and CD19 B cell Co-Culture

HIV-: 30030 (white bars)
HIV+: 10060 (black bars)

• Positive control elicited high B cell responses for CXCR5 +/- Co-cultures
Conclusion

• Optimized a B cell flow cytometry panel and ELISA
 – Detect B cell responses to potent stimulation (sCD40L+IL-21)
 – Detect recall responses to Tetanus toxoid for HIV- and HIV+ individuals
 – Detect HIV-1 specific responses for HIV+ individuals that were not present in HIV- individuals

• pTfh cell sorting assay is optimized for future experiments
Future Directions

• Increase sample size of HIV- and HIV+
 – Including HIV+ individuals with varying viral loads and CD4 counts
• Measuring pTfh function using wider panel of HIV-1 antigens
• Investigate specific interactions between pTfh and B cells in hopes of identifying molecules/pathways that may be targetable in a therapy or vaccine
Acknowledgements

• Dr. Spyros Kalams
• Katie Nicholas (PhD Candidate)
• Kalams lab members
 – Rita Smith
 – Louise Barnett
 – Mark Pilkinton (MD, PhD)
• Committee members
 – Dr. Katherine Friedman
 – Dr. Cynthia Brame