A CLASSIFICATION OF RIGHT-ANGLED COXETER GROUPS WITH NO 3-FLATS AND LOCALLY CONNECTED BOUNDARY

WES CAMP AND MICHAEL MIHALIK

Abstract. If (W, S) is a right-angled Coxeter system and W has no \mathbb{Z}^3 subgroups, then it is shown that the absence of an elementary separation property in the presentation diagram for (W, S) implies all CAT(0) spaces acted on geometrically by W have locally connected CAT(0) boundary. It was previously known that if the presentation diagram of a general right-angled Coxeter system satisfied the separation property then all CAT(0) spaces acted on geometrically by W have non-locally connected boundary. In particular, this gives a complete classification of the right-angled Coxeter groups with no 3-flats and with locally connected boundary.

1. Introduction

In this paper, we classify the right-angled Coxeter groups with no \mathbb{Z}^3 subgroups that have locally connected CAT(0) boundary. We say a CAT(0) group has locally (respectively, non-locally) connected boundary if all CAT(0) boundaries of the group are locally (respectively non-locally) connected. Our main theorem states that if the Coxeter presentation of the group satisfies an elementary combinatorial condition then this group has locally connected boundary and otherwise has non-locally connected boundary. This condition was first considered in [10], where in fact, the authors conjectured that any right-angled Coxeter group has locally connected boundary iff the group presentation satisfies this condition. The primary working tool for both this paper and [10] is the notion of a filter for CAT(0) geodesics r and s in a CAT(0) space X on which the Coxeter group W acts geometrically. A filter is a connected, one-ended planar graph whose edges are labeled by the Coxeter generators S of W. Hence there is a natural (proper) map of the filter into the Cayley graph of (W, S), which in turn maps properly and W-equivariantly into the CAT(0) space X. The two sides of the filter track the geodesics r and s and the limit set of the filter is a connected set in ∂X (the boundary of X), containing the limit points of r and s. The idea is to construct a filter in such a way so that if r and s are “close” in ∂X, then the filter has “small” limit set containing the limit points r and s, and local connectivity of the boundary of X follows.

In [10], two combinatorial conditions are defined on the Coxeter presentation of the group. The main theorem there states: if the first condition holds then the Coxeter group has non-locally connected boundary, and if neither condition holds then the Coxeter group has locally connected boundary. In fact, when neither condition holds, the filters constructed in [10] basically have hyperbolic geometry; i.e. any geodesic path in the Cayley graph from the base point of the filter to another point of the filter must track the filter geodesic connecting these two points (just as

This paper satisfies in part the Ph. D. degree requirements for the first author.
in a word hyperbolic group). In this paper, the geometry of our filters is necessarily more complex. The no \mathbb{Z}^3 subgroup hypothesis does restrict the pathology of the geometry of the filter, but our results are the natural next step towards a full classification of right-angled Coxeter groups with locally connected boundary, and give hard evidence that the conjectured classification of [10] is sound.

If a Coxeter group has no \mathbb{Z}^2 subgroup then it is word hyperbolic [13], and all one-ended word hyperbolic groups have (unique) locally connected boundary [14]. Januszkiewicz and Świątkowski ([7]) produce word hyperbolic, right-angled Coxeter groups of virtual cohomological dimension n for all positive integers n, so our no \mathbb{Z}^3 hypothesis does not restrict the virtual cohomological dimension of the groups under consideration. In [5], Croke and Kleiner exhibit a one-ended CAT(0) group with non-homeomorphic boundaries. Each of these boundaries is in fact connected but not path connected (see [4]). In particular, (by classical point set topology) these boundaries are not locally connected. It seems that many of the serious pathologies one sees in boundaries of CAT(0) groups, but not in boundaries of word hyperbolic groups, happen in the presence of non-local connectivity. At the time of this writing, no CAT(0) group has been shown to have non-homeomorphic boundaries, one of which is locally connected. There are numerous questions about how or even if the homology and homotopy of two boundaries of a CAT(0) group can differ. These questions may be more tractable if the boundaries considered are locally connected. If our results extend to all right-angled Coxeter groups then those with locally connected boundary should provide an interesting testing ground for such questions.

The paper is laid out as follows. In section 2, basic definitions and background results are listed, including a lemma (2.22) that provides the fundamental combinatorial tool for measuring how large the limit set of a filter might be. In section 3, the basics of CAT(0) spaces and groups are outlined, and we list two tracking results (developed in [10]) that connect the CAT(0) geometry and algebraic combinatorics of right-angled Coxeter groups. In section 4, we develop the idea of a filter, define a virtual factor separator and prove our main theorem:

Theorem 1.1. Suppose (W, S) is a one-ended right-angled Coxeter system that has no visual subgroup isomorphic to $(\mathbb{Z}_2 * \mathbb{Z}_2)^3$.

1. If W visually splits as $(\mathbb{Z}_2 * \mathbb{Z}_2) \times A$ then A is word hyperbolic, W has unique boundary homeomorphic to the suspension of the boundary of A, and the boundary of W is non-locally connected iff A is infinite ended.
2. Otherwise, W has locally connected boundary iff (W, S) has no virtual factor separator.

Corollary 1.2. Suppose (W, S) is a one-ended right-angled Coxeter system that has no visual subgroup isomorphic to $(\mathbb{Z}_2 * \mathbb{Z}_2)^3$. Then all CAT(0) boundaries of W are locally connected or all are non-locally connected.

The group W visually splits as in item (1) of the theorem precisely when there are $s, t \in S$ such that $m(s, t) = \infty$ and $\{s, t\}$ commutes with $S - \{s, t\}$, so this condition is easily checked. If a CAT(0) group splits as $G = (\mathbb{Z}_2 * \mathbb{Z}_2) \times A$ then any boundary of G is the suspension of a boundary of A (see [10]) and this suspension is locally connected iff the boundary of A is locally connected. If (W, S) is a one-ended right-angled Coxeter system with no visual subgroup isomorphic to $(\mathbb{Z}_2 * \mathbb{Z}_2)^3$ and W visually splits as $(\mathbb{Z}_2 * \mathbb{Z}_2) \times A$, then A is word hyperbolic (see [13]). It
is straightforward to check if a Coxeter group is infinite-ended (see Remark 4.3). Thus item (1) of the theorem is easily verified and the real content of the theorem is contained in item (2). If $C \subset S$ is a virtual factor separator for (W,S), then W visually splits as an amalgamated product $\langle A \rangle \ast \langle C \rangle \langle B \rangle$ (here A and B are subsets of S with $A \cup B = S$ and $A \cap B = C$). Therefore local connectivity of boundaries of W is directly tied to visual splittings.

In section 5, we give examples to show there are no combination or splitting results for right-angled Coxeter groups that respect local connectivity of boundaries. One example describes a right-angled Coxeter group as the (visual) amalgamated product $W = A \ast C B$ where A and B are one-ended and word hyperbolic (so both have locally connected boundary) and C is virtually a surface group (with boundary a circle), but W has non-locally connected boundary. The second example describes a right-angled Coxeter group W that visually splits as $A \ast C B$, and a single element of infinite order in C determines a boundary point of non-local connectivity in both A and B. Nevertheless, our main theorem implies W has locally connected boundary. These examples indicate there are no reasonable graph of groups approaches to this problem. Morse theory also seems unhelpful, but we do not expand here.

2. Preliminaries

We use [2] and [6] as basic references for the results in this section.

Definition 2.1. A **Coxeter system** is a pair (W,S), where W is a group with Coxeter presentation:

$$\langle S : (st)^{m(s,t)} \rangle$$

where $m(s,t) \in \{1, 2, \ldots, \infty\}$, $m(s,t) = 1$ iff $s = t$, and $m(s,t) = m(t,s)$. The relation $m(s,s) = 1$ means each generator is of order 2, and $m(s,t) = 2$, iff s and t commute.

Definition 2.2. We call a Coxeter group (W,S) **right-angled** if $m(s,t) \in \{2, \infty\}$ for all $s \neq t$.

We are only interested in right-angled Coxeter groups in this paper but we state many of the lemmas of this section in full generality. In what follows, we will let $\Lambda = \Lambda(W,S)$ denote an abbreviated version of the Cayley graph for W with respect to the generating set S. As usual, the vertices of Λ are the elements of W, and there is an edge between the vertices w and ws for each $s \in S$, but instead of having two edges between adjacent vertices in the graph (since each generator has order 2), we allow only one.

Definition 2.3. For a Coxeter system (W,S), the **presentation graph** $\Gamma(W,S)$ for (W,S) is the graph with vertex set S and an edge labeled $m(s,t)$ connecting distinct $s,t \in S$ when $m(s,t) \neq \infty$.

Definition 2.4. For a Coxeter system (W,S), a **word** in S is an n-tuple $w = [a_1, a_2, \ldots, a_n]$, with each $a_i \in S$. Let $\overline{w} = a_1 \cdots a_n \in W$. We say the word w is **geodesic** if there is no word $[b_1, b_2, \ldots, b_m]$ such that $m < n$ and $\overline{w} = b_1 \cdots b_m$. Define $lett(w) = \{a_1, \ldots, a_n\}$.
Definition 2.5. For a Coxeter system (W, S), let \(\tau \in S \) be the label of the edge \(e \) of \(\Lambda(W, S) \). An edge path \(\alpha \equiv (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n) \) in a graph \(\Gamma \) is a map \(\alpha : [0, n] \rightarrow \Gamma \) such that \(\alpha \) maps \([i, i+1] \) isometrically to the edge \(e_i \). For \(\alpha \) an edge path in \(\Lambda(W, S) \), let \(\operatorname{lett}(\alpha) \equiv \{\tau_1, \ldots, \tau_n\} \), and let \(\overline{\tau} \equiv \tau_1 \cdots \tau_n \). If \(\beta \) is another geodesic with the same initial and terminal points as \(\alpha \), then call \(\beta \) a rearrangement of \(\alpha \).

Lemma 2.6. Suppose \((W, S)\) is a Coxeter system, and \(a \) and \(b \) are \(S \)-geodesics for \(w \in W \) (so \(w = \overline{a} = \overline{b} \)). Then \(\operatorname{lett}(a) = \operatorname{lett}(b) \).

Definition 2.7. If \((W, S)\) is a Coxeter system and \(A \subset S \), then \(\operatorname{lk}(A) \equiv \{t \in S : m(a, t) = 2 \text{ for all } a \in A\} \). So when \((W, S)\) is right-angled, \(\operatorname{lk}(A) \) is the combinatorial link of \(A \) in \(\Gamma(W, S) \), and the subgroups \(\langle A \rangle \) and \(\langle \operatorname{lk}(A) \rangle \) of \(W \) commute.

Lemma 2.8. (The Deletion Condition). Suppose \((W, S)\) is a Coxeter system. If the \(S \)-word \(w = [a_1, a_2, \ldots, a_n] \) is not geodesic, then two of the \(a_i \) delete; i.e. we have for some \(i < j \), \(\overline{w} = a_1 a_2 \cdots a_n = a_1 a_2 \cdots a_{i-1} a_{i+1} \cdots a_j a_j+1 \cdots a_n \).

For a Coxeter system \((W, S)\), an edge path \(\alpha \equiv (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n) \) in \(\Lambda(W, S) \) is geodesic iff the word \([\tau_1, \tau_2, \ldots, \tau_n] \) is geodesic. If \(\alpha \) is not geodesic and \(\tau_i \) deletes with \(\tau_j \), for \(i < j \), let \(\tau \) be the path beginning at the end point of \(e_{i-1} \) with edge labels \([\tau_{i+1}, \ldots, \tau_{j-1}] \). Then \(\tau \) ends at the initial point of \(e_{j+1} \), so that \((\varepsilon_1, \ldots, \varepsilon_{i-1}, \tau, \varepsilon_{j+1}, \ldots, \varepsilon_n) \) is a path with the same end points as \(\alpha \). We say the edges \(e_i \) and \(e_j \) delete in \(\alpha \).

Definition 2.9. If \((W, S)\) is a Coxeter system and \(A \subset S \), then the subgroup of \(W \) generated by \(A \) is called a special (or visual) subgroup of \(W \).

Lemma 2.10. Suppose \((W, S)\) is a Coxeter system, and \(A \subset S \). Then the special subgroup \(\langle A \rangle \) of \(W \) has Coxeter (sub)-presentation

\[
\langle A : (st)^{m(s,t)} ; s, t \in A \rangle
\]

In particular, distinct \(s, t \in S \) determine unique elements of \(W \), and \(m(s,t) \) is the order of \(st \) for all \(s, t \in S \).

Lemma 2.11. Suppose \((W, S)\) is a Coxeter system, and \(U, V \subset S \), with \(U \cap V = \emptyset \). If \(u \) is a geodesic in the letters of \(U \) and \(v \) is a geodesic in the letters of \(V \), then \([u, v] \) is an \(S \)-geodesic.

Definition 2.12. For \((W, S)\) a Coxeter system and \(\alpha \) a geodesic in \(\Lambda(W, S) \), let \(B(\alpha) \equiv \{\tau \in S : e \text{ is a } \Lambda \text{-edge at the end of } \alpha \text{ and } (\alpha, e) \text{ is not geodesic}\} \).

Lemma 2.13. Suppose \((W, S)\) is a Coxeter system, and \(\alpha \) a geodesic in \(\Lambda \). Then \(B(\alpha) \) generates a finite group.

Lemma 2.14. If \((W, S)\) is a right-angled Coxeter system, and \(s, t \in S \) delete in some \(S \)-word. Then \(s = t \).

Lemma 2.15. Suppose \((W, S)\) is a right-angled Coxeter system, \([a_1, a_2, \ldots, a_n]\) is geodesic and \([a_1, a_2, \ldots, a_n, a_{n+1}]\) is not. Then \(a_{n+1} \) deletes with some \(a_m \). If \(i \neq n + 1 \) is the largest integer such that \(a_i = a_{n+1} \), then \(a_{n+1} \) deletes with \(a_i \) and \(a_{n+1} \) commutes with each letter \(a_{i+1}, a_{i+2}, \ldots, a_n \).

Definition 2.16. Suppose \(\Gamma \) is the presentation graph of a Coxeter system \((W, S)\), and \(C \subset S \) separates the vertices of \(\Gamma \). Let \(A' \) be the vertices of a component of \(\Gamma - C \) and \(B = S - A' \). Let \(A = A' \cup C \). Then \(W \) splits as \(\langle A \rangle \ast \langle C \rangle \langle B \rangle \) (see [11]) and this splitting is called a visual splitting for \((W, S)\).
Definition 2.17. Let \((W,S)\) be a Coxeter system, and let \(e\) be an edge of \(\Lambda(W,S)\) with initial vertex \(v \in W\). The **wall** \(w(e)\) is the set of edges of \(\Lambda(W,S)\) each fixed (setwise) by the action of the conjugate \(vev^{-1}\) on \(\Lambda\).

Remark 2.18. Certainly \(e \in w(e)\) and if \(d\) is an edge of \(w(e)\), with vertices \(u\) and \(w\), then \((vev^{-1})u = w\) and \((vev^{-1})w = u\). Also, \(\Lambda(W,S) - w(e)\) has exactly two components and these components are interchanged by the action of \(vev^{-1}\) on \(\Lambda(W,S)\).

If \((W,S)\) is right-angled, then given an edge \(e\) of \(\Lambda(W,S)\) with initial vertex \(y_1\) and terminal vertex \(y_2\), \(e\) is in the same wall as \(e\) iff there is an edge path \((t_1, \ldots, t_n)\) in \(\Lambda(W,S)\) based at \(w_1\) so that \(w_1t_1 \cdots t_n = y_1\) and \(w_2t_1 \cdots t_n = y_2\), where \(y_1\) and \(y_2\) are the vertices of \(e\) and \(m(t_i, t_i) = 2\) for each \(1 \leq i \leq n\).

Definition 2.19. Let \((W,S)\) be a right-angled Coxeter system. We say the walls \(w(e) \neq w(d)\) of \(\Lambda(W,S)\) **cross** if there is a relation square in \(\Lambda(W,S)\) with edges in \(w(e)\) and \(w(d)\).

Remark 2.20. We have the following basic properties of walls in a right-angled Coxeter system \((W,S)\):

1. If edges \(a\) and \(e\) of \(\Lambda(W,S)\) are in the same wall, then \(\pi = \pi\).
2. Being in the same wall is an equivalence relation on the set of edges of \(\Lambda(W,S)\).
3. If \((e_1, e_2, \ldots, e_n)\) is an edge path in \(\Lambda(W,S)\) then \(e_i\) and \(e_j\) are in the same wall iff \(\tau_i\) and \(\tau_j\) delete in the word \([e_1, e_2, \ldots, e_n]\). Furthermore, the path \((e'_1, e'_2, \ldots, e'_{n-1})\) that begins at the initial point of \(e_i\), and has the same labeling as \((e_{i+1}, e_{j-1})\), ends at the end point of \(e_j\) and \(w(e_k) = w(e'_k)\) for all \(i < k < j\). If \(\gamma\) is a path in \(\Lambda(W,S)\), then \(\gamma\) is geodesic iff no two edges of \(\gamma\) are in the same wall.
4. If \(\gamma\) and \(\tau\) are geodesics in \(\Lambda(W,S)\) between the same two points, then the edges of \(\gamma\) and \(\tau\) define the same set of walls.

The basics of van Kampen diagrams can be found in Chapter 5 of [8]. Suppose \((W,S)\) is a right-angled Coxeter system. We need only consider relation squares with boundary labels \(abab\) in van Kampen diagrams for right-angled Coxeter groups (since those of the type \(aa\) are easily removed). Let \((w_1, \ldots, w_n)\) be an edge path loop in \(\Lambda(W,S)\), so \(\overline{w}_1 \cdots \overline{w}_n = 1\) in \(W\). Consider a van Kampen diagram \(D\) for this word. For a given boundary edge \(d\) of \(D\) (corresponding to say \(w_i\)), \(d\) can belong to at most one relation square of \(D\) and there is an edge \(d_1\) opposite \(d\) on this square. Similarly, if \(d_1\) is not a boundary edge, it belongs to a unique relation square adjacent to the one containing \(d\) and \(d_1\). Let \(d_2\) be the edge opposite \(d_1\) in the second relation square. These relation squares define a **band** in \(D\) starting at \(d\) and ending at say \(d'\) on the boundary of \(D\) and corresponding to some \(w_j\) with \(j \neq i\). This means that \(w_i\) and \(w_j\) are in the same wall. However, \(w_k\) and \(w_\ell\) being in the same wall does not necessarily mean that they are part of the same band in \(D\); but if \((w_1, \ldots, w_r)\) and \((w_{r+1}, \ldots, w_n)\) are both geodesics, then by (3) in the above remark, bands in \(D\) correspond exactly to walls in \(\Lambda(W,S)\). This is the situation we will usually consider.

Lemma 2.21. Let \((W,S)\) be a right-angled Coxeter system, and let \(\gamma\) be a geodesic in \(\Lambda(W,S)\) with initial vertex \(x\) and terminal vertex \(y\). Let \(A\) be a set of edges of \(\gamma\), and \(\tau_A\) be a shortest path based at \(x\) containing an edge in the same wall as a for all \(a \in A\). Then \(\tau_A\) can be extended to a geodesic to \(y\).
Proof. Let \(v \) denote the endpoint of \(\tau_A \), and let \(\lambda \) be a geodesic from \(v \) to \(y \). Let \(\tau_A = (a_1, \ldots, a_n) \) and consider a van Kampen diagram \(D \) for \((\tau_A, \lambda, \gamma^{-1}) \). If \(W(a_j) = W(a) \) for some \(a \in A \) and the band for \(a_j \) does not end on \(\gamma \), then it must end on \(\lambda \), by (3) of Remark 2.20. However, then the band for \(a \) cannot end on \(\lambda, \gamma, \) or \(\tau_A \) (which is impossible). Therefore the band for \(a_j \) must end on \(\lambda \), by (3) of Remark 2.20.

Therefore, all bands on \(\lambda \) and \(\tau_a \) end on \(\gamma \), so \((\tau_a, \lambda)\) has the same length as \(\gamma \) and is therefore geodesic.

The following lemma has some of its underlying ideas in Lemma 5.10 of [10]. It is an important tool for measuring the size of (connected) sets in the boundaries of our groups and is used repeatedly in our proof of the main theorem.

Lemma 2.22. Suppose \((W, S)\) is a right-angled Coxeter system, and \((\alpha_1, \alpha_2)\) and \((\beta_1, \beta_2)\) are geodesics in \(\Gamma(W, S) \) between the same two points. There exist geodesics \((\gamma_1, \tau_1), (\gamma_1, \delta_1), (\delta_2, \gamma_2)\), and \((\tau_2, \gamma_2)\) with the same end points as \(\alpha_1, \beta_1, \alpha_2, \beta_2 \) respectively, such that:

1. \(\tau_1 \) and \(\tau_2 \) have the same edge labeling,
2. \(\delta_1 \) and \(\delta_2 \) have the same edge labeling, and
3. \(\text{let}(\tau_1) \) and \(\text{let}(\delta_1) \) are disjoint and commute.

Furthermore, the paths \((\tau_1^{-1}, \delta_1)\) and \((\delta_2, \tau_2^{-1})\) are geodesic.

Proof. Consider a van Kampen diagram for the loop \((\alpha_1, \alpha_2, \beta_2^{-1}, \beta_1^{-1})\) (Figure 1), and recall that since \((\alpha_1, \alpha_2)\) and \((\beta_1, \beta_2)\) are geodesic, bands in this van Kampen
diagram correspond exactly to walls in $\Lambda(W, S)$. Let a_1, \ldots, a_n be the edges of α_1 (in the order they appear on α_1) that are in the same wall as an edge of β_1. Notice that if e is an edge of α_1 occurring before a_1, then $w(e)$ crosses $w(a_1)$. Therefore α_1 can be rearranged to begin with an edge in $w(a_1)$, since π_1 commutes with every edge label of α_1 before it. Similarly, $w(a_2)$ must cross $w(e)$ for any edge $e \neq a_1$ of α_1 occurring before a_2, so α_1 can be rearranged to begin with an edge in $w(a_1)$ followed by an edge in $w(a_2)$. Continuing for each a_i gives us a rearrangement (γ_1, τ_1) of α_1 where the walls of γ_1 are exactly $w(a_1), \ldots, w(a_n)$. If b_1, \ldots, b_m are the edges of β_1 in the same wall as an edge of α_1, then the same process gives us a rearrangement (γ'_1, δ_1) of β_1 where the walls of γ'_1 are exactly $w(b_1), \ldots, w(b_m)$. However, $\{w(a_1), \ldots, w(a_n)\} = \{w(b_1), \ldots, w(b_m)\}$, so $n = m$ and γ_1 and γ'_1 are geodesics between the same points, so (γ_1, δ_1) is a rearrangement of β_1. Construct rearrangements (δ_2, γ_2) and (τ_2, γ_2) of α_2 and β_2 respectively in the same way, and note that τ_1 and τ_2 have the same walls, δ_1 and δ_2 have the same walls, and every wall of τ_1 crosses every wall of δ_1. In particular, (see Remark 2.20 (3)) (τ_1^{-1}, δ_1) is geodesic.

Remark 2.23. For the entirety of this paper, we will only consider the case of Lemma 2.22 where $|\alpha_1| = |\beta_1|$. In this case, $|\tau_1| = |\tau_2| = |\delta_1| = |\delta_2|$, so the diamond formed by the loop $\tau_1^{-1} \delta_1 \tau_2 \delta_2^{-1}$ is actually a product square. If y is the endpoint of α_1 and μ is any other geodesic between the same points as (α_1, α_2), the diamond between (α_1, α_2) and μ at y is therefore well defined. We call τ_1^{-1} the down edge path at y and δ_2 the up edge path at y of the diamond for (α_1, α_2) and (β_1, β_2).

Lemma 2.24. Suppose (W, S) is a right-angled Coxeter system with no visual subgroup isomorphic to $(\mathbb{Z}_2 \ast \mathbb{Z}_2)^3$. Let $\lambda_1, \lambda_2, \lambda_3$ be $\Lambda(W, S)$-geodesics between two points a and b, and let x_1, x_2, x_3 be points on $\lambda_1, \lambda_2, \lambda_3$ respectively, such that the x_i are all equidistant from a. Let ν_{12} and ν_{13} be the down edge paths respectively of the diamonds at x_1 between λ_1 and λ_2 and between λ_1 and λ_3, as in Lemma 2.22, and suppose $|\nu_{12}| \geq |\nu_{13}| \geq 2|S|$. If $\{a, b\} \subset \text{lett}(\nu_{12}) \cap \text{lett}(\nu_{13})$ and $m(a, b) = \infty$, then $d(x_2, x_3) < 2(|\nu_{12}| - |\nu_{13}|) + 4|S|$.
Proof. To simplify notation we use the same label for two paths with the same edge labeling. Let ν^{12} and ν^{13} be the up edge paths respectively of the diamonds at x_1 between λ_1 and λ_2 and between λ_1 and λ_3. Note that at x_2, $\nu^{12}\nu^{12}\nu^{13}\nu^{13}$ is a path from x_2 to x_3. By Lemma 2.22, $\{a, b\}$ is disjoint from and commutes with $\text{let}(\nu^{12}) \cup \text{let}(\nu^{13})$. Thus, ν^{13} cannot have a pair of walls with unrelated labels cross a pair of walls with unrelated labels from ν^{12}, since that would give a visual $(\mathbb{Z}_2 * \mathbb{Z}_2)^3$ in W. Rearrange ν^{12} and ν^{13} so they have a longest common initial segment (see definition 2.5). As ν^{12} and ν^{13} are initial segments of a geodesic from x_1 to b, the walls of the unshared edges of ν^{13} cross those of ν^{12}. In particular, the unshared part of ν^{13} has length $\leq |S| - 1$, and ν^{12} and ν^{13} share two walls with unrelated labels. By symmetry, this last part implies ν^{13} and ν^{12} at x_1 can be rearranged to have a shared initial segment so the unshared part of ν^{13} has length $\leq |S| - 1$. Deleting edges of the path $\nu^{12}\nu^{12}\nu^{13}\nu^{13}$ (from x_2 to x_3) corresponding to these shared walls leaves us with a geodesic from x_2 to x_3 of length less than $2(|\nu^{12}| - |\nu^{13}|) + 4|S|$. \hfill \Box

3. CAT(0) Spaces and Actions by Coxeter Groups

Definition 3.1. A metric space (X, d) is **proper** if each closed ball is compact.

Definition 3.2. Let (X, d) be a complete proper metric space. Given a geodesic triangle $\triangle abc$ in X, we consider a **comparison triangle** $\triangle \overline{a}\overline{b}\overline{c}$ in \mathbb{R}^2 with the same side lengths. We say X satisfies the **CAT(0) inequality** (and is thus a **CAT(0) space**) if, given any two points p, q on a triangle $\triangle abc$ in X and two corresponding points $\overline{p}, \overline{q}$ on a corresponding comparison triangle $\triangle \overline{a}\overline{b}\overline{c}$, we have
\[
d(p, q) \leq d(\overline{p}, \overline{q}).
\]

Proposition 3.3. If (X, d) is a CAT(0) space, then
1. the distance function $d : X \times X \to \mathbb{R}$ is convex,
2. X has unique geodesic segments between points, and
(3) X is contractible.

Definition 3.4. A geodesic ray in a CAT(0) space X is an isometry $[0, \infty) \to X$.

Definition 3.5. Let (X, d) be a proper CAT(0) space. Two geodesic rays $c, c' : [0, \infty) \to X$ are called asymptotic if for some constant K, $d(c(t), c'(t)) \leq K$ for all $t \in [0, \infty)$. Clearly this is an equivalence relation on all geodesic rays in X, regardless of basepoint. We define the boundary of X (denoted ∂X) to be the set of equivalence classes of geodesic rays in X. We denote the union $X \cup \partial X$ by \overline{X}.

The next proposition guarantees that the topology we wish to put on the boundary is independent of our choice of basepoint in X.

Proposition 3.6. Let (X, d) be a proper CAT(0) space, and let $c : [0, \infty) \to X$ be a geodesic ray. For a given point $x \in X$, there is a unique geodesic ray based at x which is asymptotic to c.

For a proof of this (and more details on what follows), see [3].

We wish to define a topology on \overline{X} that induces the metric topology on X. Given a point in ∂X, we define a neighborhood basis for the point as follows:

Pick a basepoint $x_0 \in X$. Let c be a geodesic ray starting at x_0, and let $\epsilon > 0$, $r > 0$. Let $S(x_0, r)$ denote the sphere of radius r based at x_0, and let $p_r : X \to S(x_0, r)$ denote the projection onto $S(x_0, r)$. Define

$$U(c, r, \epsilon) = \{ x \in \overline{X} : d(x, x_0) > r, d(p_r(x), c(r)) < \epsilon \}.$$

This consists of all points in \overline{X} whose projection onto $S(x_0, r)$ is within ϵ of the point of the sphere through which c passes. These sets together with the metric balls in X form a basis for the cone topology. The set ∂X with this topology is sometimes called the visual boundary. For our purposes, we will just call it the boundary of X.

Definition 3.7. We say a finitely generated group G acts geometrically on a proper geodesic metric space X if there is an action of G on X such that:

1. Each element of G acts by isometries on X,
2. The action of G on X is cocompact, and
3. The action is properly discontinuous.

Definition 3.8. We call a group G a CAT(0) group if it acts geometrically on a CAT(0) space.

The next theorem, due to Milnor [12], will be used in conjunction with the next two technical lemmas to identify geodesic rays in X with certain rays in a right-angled Coxeter group which acts on X.

Theorem 3.9. If a group G with a finite generating set S acts geometrically on a proper geodesic metric space X, then G with the word metric with respect to S is quasi-isometric to X under the map $g \mapsto g \cdot x_0$, where x_0 is a fixed base point in X.

Let (W, S) be a right-angled Coxeter group acting geometrically on a CAT(0) space X. Pick a base point $* \in X$ and identify a copy of the Cayley graph for (W, S) inside X as in the previous theorem. If vertices u, v of $\Lambda(W, S)$ are adjacent, then we connect $u*$ and $v*$ with a CAT(0) geodesic in X. This defines a map $C : \Lambda \to X$ respecting the action of W. If α is a Λ-geodesic, we call $C(\alpha)$ a Λ-geodesic in X.

Definition 3.10. Let \(r : [a, b] \to X \) be a geodesic segment in \(X \) with \(r(a) = x \) and \(r(b) = y \). For \(\delta > 0 \), we say that a Cayley graph geodesic \(\alpha \delta\)-tracks \(r \) if every point of \(C(\alpha) \) is within \(\delta \) of a point of the image of \(r \) and the endpoints of \(r \) and \(C(\alpha) \) are within \(\delta \) of each other.

Proofs of the next two lemmas can be found in section 4 of [10].

Lemma 3.11. There exists some \(\delta_1 > 0 \) such that for any geodesic ray \(r : [0, \infty) \to X \) based at \(x_0 \), there is a geodesic ray \(\alpha_r \) in \(\Lambda(W, S) \) that \(\delta_1\)-tracks \(r \).

Lemma 3.12. There exist \(c, d > 0 \) such that, for any infinite geodesic rays \(r \) and \(s \) and \(X \) based at \(x_0 \) that are within \(c \) of each other at distance \(M \) from \(x_0 \), there are Cayley graph geodesic rays \(\alpha \) and \(\beta \) which \((c+\delta)\)-track \(r \) and \(s \) respectively, and which share a common initial segment of length \(M - c - d \).

4. Local Connectivity and Filter Construction

Definition 4.1. We say a CAT(0) group \(G \) has (non-)locally connected boundary if for every CAT(0) space \(X \) on which \(G \) acts geometrically, \(\partial X \) is (non-)locally connected.

Definition 4.2. Let \((W, S)\) be a right-angled Coxeter system, and let \(\Gamma \) be the presentation graph for \((W, S)\). A virtual factor separator for \((W, S)\) (or \(\Gamma \)) is a pair \((C, D)\) where \(D \subset C \subset S \), \(C \) separates vertices of \(\Gamma \), \((C - D)\) is finite and commutes with \(\langle D \rangle \), and there exist \(s, t \in S - D \) such that \(m(s, t) = \infty \) and \(\{s, t\} \) commutes with \(D \).

In this section we prove the main theorem (1.1). Part (1) of this result is clear. If the right angled Coxeter system \((W, S)\) does not visually split as a direct product \((\mathbb{Z}_2 * \mathbb{Z}_2) \times A\) and has a virtual factor separator, then \(W \) has non-locally connected boundary (see [10]). It remains to show local connectivity of the boundaries of CAT(0) spaces acted upon geometrically by one-ended right-angled Coxeter groups with no virtual factor separators. To do this, we pick two rays whose end points are “close” in \(\partial X \), and use Lemma 3.12 to find two tracking Cayley geodesics which share a long initial segment. We then construct a filter of geodesics (a way of “filling in” the space) between the branches of these Cayley geodesics such that its limit set gives a small connected set in \(\partial X \) containing our original rays.

In what follows, let \((W, S)\) be a right-angled, one-ended Coxeter system with no virtual factor separator and containing no visual subgroup isomorphic to \((\mathbb{Z}_2 * \mathbb{Z}_2)^3\).

Set \(N = |S| \). We will show that if \(W \) acts geometrically on a CAT(0) space \(X \), then given \(\epsilon > 0 \), there exists \(\delta \) such that if two points \(x, y \in \partial X \) satisfy \(d(x, y) < \delta \), then there is a connected set in \(\partial X \) of diameter \(\leq \epsilon \) containing \(x \) and \(y \).

Remark 4.3. The right-angled Coxeter group \(W \) is one-ended iff \(\Gamma(W, S) \) contains no complete separating subgraph (i.e., a subgraph whose vertices generate a finite group in \(W \)). For a proof of this, see [11].

Remark 4.4. If \(e \) is an edge in \(\Lambda(W, S) \), we let \(\tau \in S \) denote the label of \(e \). Recall that for \(g \in W \), \(B(g) \) is the set of \(s \in S \) such that \(gs \) is shorter than \(g \), and that \(\langle B(g) \rangle \) is finite (Lemma 2.13). For any other geodesic \(\gamma \) from \(a \) to \(b \), we have \(B(\alpha) = B(\gamma) \).

Remark 4.5. If \(\alpha \) is a geodesic in \(\Lambda(W, S) \) from a vertex \(a \) to another vertex \(b \), then for any other geodesic \(\gamma \) from \(a \) to \(b \), we have \(B(\alpha) = B(\gamma) \). Since this set depends
only on a and b, we may use the notation $B(b \to a)$ to denote $B(a)$, where it is more convenient to do so.

We begin with an example that demonstrates one important idea behind our proof. Let (W,S) be a right-angled Coxeter system where W is one-ended and acts geometrically on a CAT(0) space X. Suppose that $(e_1, e_2, \ldots, e_m, e_{m+1}, e_{m+2}, \ldots)$ and $(e_1, e_2, \ldots, e_m, d_{m+1}, d_{m+2}, \ldots)$ are Λ-geodesics in X, based at a vertex \ast, that $(c + d)$-track two CAT(0) geodesics r and s in X (as in Lemma 3.12), and let x_m denote the endpoint of (e_1, \ldots, e_m). Set $a_1 = e_{m+1}$ and $b_1 = d_{m+1}$. By the previous remarks, $B(x_m \to \ast)$ does not separate the presentation graph $\Gamma(W,S)$, and $a_1, b_1 \not\in B(x_m \to \ast)$. Let $a_1, t_1, \ldots, t_k, b_1$ be the vertices of a path from a_1 to b_1 in $\Gamma(W,S)$ where each $t_i \not\in B(x_m \to \ast)$. We can construct the following (labeled) planar diagram (Figure 3) that maps naturally into Λ (respecting labels) and then to X:

As in [10], we call Figure 3 a **fan** for the geodesics $(e_1, \ldots, e_m, e_{m+1})$ and $(e_1, \ldots, e_m, d_{m+1})$. Each loop corresponds to the relation given by t_i and t_{i+1} commuting. Since each t_i commutes with t_{i+1} and $t_i, t_{i+1} \not\in B(x_m \to \ast)$, the path $(e_1, \ldots, e_m, t_i, t_{i+1})$ is geodesic for each i (this is an easy consequence of Lemma 2.15). Now, let $a_2 = \tau_{m+2}$, $b_2 = \tau_{m+2}$, and continue. We overlap our original fan with fans for the pairs of geodesics $(e_1, \ldots, e_m, e_{m+1}, e_{m+2})$ and $(e_1, \ldots, e_m, e_{m+1}, t_1)$, $(e_1, \ldots, e_m, t_1, a_1)$ and $(e_1, \ldots, e_m, t_1, t_2)$, and so on, ending with a fan for $(e_1, \ldots, e_m, d_{m+1}, t_k)$ and $(e_1, \ldots, e_m, d_{m+1}, d_{m+2})$.

By continuing to build fans in this manner, we construct (Figure 4) a connected, one-ended, planar graph (with edge labels in S) called a **filter** for the geodesics $(e_1, e_2, \ldots, e_m, e_{m+1}, e_{m+2}, \ldots)$ and $(e_1, e_2, \ldots, e_m, d_{m+1}, d_{m+2}, \ldots)$. Note that if v is a vertex of the filter, then the obvious edge paths in the filter from \ast to v define Λ-geodesics. The limit set determined by this filter in ∂X is a connected set containing our original rays r and s. However, this connected set may not be small. We refer to the image of a filter, in Λ or in X, again as a filter.
Figure 4

If we wish for the limit set of our filter to be small in ∂X, we need to ensure that the CAT(0) geodesics between $*$ and points in our filter are not far from the base point x_m of our filter. Using Lemma 2.22, we know what a wide bigon between two geodesics in Λ must look like. Our first goal is to classify the "down edge paths", from x_m towards $*$, of any potential diamond given by a wide bigon in Λ, and show there are only two "types" of such paths.

Remark 4.6. For the rest of this section, we assume that Γ has no virtual factor separators and (W,S) contains no visual subgroup isomorphic to $(\mathbb{Z}_2 \ast \mathbb{Z}_2)^3$.

Definition 4.7. Construct a geodesic from x_m to $*$ in Λ as follows: let α_1 be a longest geodesic with edge labels in the finite group $\langle B(x_m \to *) \rangle$, and let y_1 be the endpoint of α_1 based at x_m. Let α_2 be a longest geodesic in the finite group $\langle B(y_1 \to *) \rangle$. Continuing in this way, we obtain a geodesic $(\alpha_1, \alpha_2, \ldots, \alpha_r)$ from x_m to $*$. We call this a **back combing** geodesic from x_m to $*$.

Remark 4.8. We have the following properties of a back combing geodesic $(\alpha_1, \alpha_2, \ldots, \alpha_r)$ from x_m to $*$:

1. Every edge label of α_i commutes with every other edge label of α_i.
2. No edge label of α_{i+1} commutes with every edge label of α_i.
3. Let (γ_1, γ_2) be a Λ-geodesic from x_m to $*$ and let v be the endpoint of γ_1. If $(\beta_1, \beta_2, \ldots, \beta_s)$ is a back combing geodesic from x_m to v, then the set of walls of β_i is a subset of the set of walls of α_i, for $1 \leq i \leq s$. In particular:
 4. Let (γ_1, γ_2) be a Λ-geodesic from x_m to $*$. If γ_1 has an edge in the same wall as an edge of α_j for some $1 \leq j \leq r$, then γ_1 contains an edge in the same wall as an edge of α_i for all $1 \leq i \leq j$.
 5. Let (γ_1, γ_2) and (τ_1, τ_2) be Λ-geodesics from x_m to $*$. If each of τ_1, γ_1, and α_j (for some $1 \leq j \leq r$) has an edge of the wall $w(e)$, then for each $1 \leq i \leq j$, each of α_i, τ_1, and γ_1 has an edge of the wall $w(e_i)$.

We will always assume that x_m and $*$ are sufficiently far apart, so for now suppose $d(x_m, *) > 7N^2$. Let $\alpha_{7N+1} = (u_1, u_2, \ldots, u_k)$ (note $k < N$), and for $1 \leq i \leq k$, let
U_i be a shortest $Λ$-geodesic based at x_m such that last edge of U_i is in the same wall as u_i (so by Lemma 2.21, U_i extends to a geodesic from x_m to $*$). There may be several such geodesics, but they all have the same set of walls.

Lemma 4.9. If $(γ_1, γ_2)$ is a $Λ$-geodesic from x_m to $*$ with $|γ_1| ≥ 7N^2$, then $γ_1$ can be rearranged to begin with exactly U_i, for some $1 ≤ i ≤ k$.

Proof. Consider a van Kampen diagram (Figure 5) for the geodesic bigon determined by $(γ_1, γ_2)$ and a $Λ$-geodesic from x_m to $*$ that begins with U_i. Let $γ_1 = (t_1, t_2, \ldots, t_s)$, where $s ≥ 7N^2$. Let j be the smallest number such that the edge t_j shares a wall with an edge u_i of $α_{7N+1}$, for some $1 ≤ i ≤ k$ (such a j exists from Remark 4.8 (3) and because the lengths of $α_1, \ldots, α_{7N}$ are each less than N).

Now, choose $ℓ$ maximal with $1 < ℓ < j$ where the wall of $t_ℓ$ is not on U_i. Clearly the wall of $t_ℓ$ crosses the walls of $t_ℓ+1, \ldots, t_j$, so $t_ℓ$ commutes with $t_{ℓ+1}, \ldots, t_j$, and so $t_1 \cdots t_j$ can be rewritten $t_1 \cdots t_ℓ-1 \tilde{t}_{ℓ+1} \cdots \tilde{t}_j t_ℓ$. Repeating this process, we obtain a rearrangement of $γ_1$ that begins with a rearrangement of U_i, which can be replaced by U_i. □

We now have a finite number $k < N$ of “directions”, given by our U_i, in which a bigon can be wide at x_m. The next lemma (4.10) is a fundamental combinatorial consequence of our no $(\mathbb{Z}_2 \ast \mathbb{Z}_2)^3$ hypothesis which allows us to refine this collection to at most two directions.

We will say that U_i and U_j **R-overlap** if there is an edge a of $α_R$ that shares a wall with an edge of U_i and an edge of U_j. Let $τ_a$ be a shortest $Λ$-geodesic based at x_m that can be extended to a geodesic ending at $*$ and whose last edge is in the same wall as a. Then U_i and U_j can be rearranged to begin with $τ_a$. We will now refine our list of U_i through the following five step process which at each application either terminates the process, or removes at least one of the U_i from our list and
replaces all those that remain by geodesics with last edge in a wall of α_R where R begins at $7N$ and is reduced by one at each successive application:

1. Choose i minimal so that for some $j > i$, U_i and U_j R-overlap (by sharing some wall with an edge a of α_R). If no such i exists, our process stops.
2. Replace U_i with a shortest geodesic based at x_m and ending with an edge in the wall of a (which can be extended to a geodesic to \ast by Lemma 2.21), and redefine u_i to be a.
3. Eliminate U_j from the list of U_ℓ.
4. For each remaining U_ℓ with $\ell \neq i$, choose an edge of U_ℓ in the same wall as an edge b_ℓ of α_R, replace U_ℓ with a shortest geodesic based at x_m and ending with an edge in the wall of b_ℓ, and redefine u_ℓ to be b_ℓ.
5. At this point each U_ℓ ends with an edge sharing a wall with an edge of α_R.
 - If two U_ℓ end with edges in the same wall, remove one of them from the list. Now, relabel the remaining U_ℓ to form a list U_1, \ldots, U_p. Reduce R to $R - 1$.

When this process stops, no two U_i R-overlap, and each u_i shares a wall with an edge of α_{R+1}. Since U_i is a shortest geodesic with last edge in the wall of u_i, every geodesic from x_m to the end point of U_i ends with u_i. By the minimality of U_i and Remark 4.8 (3), if c is an edge of U_i in a wall of α_R, then τ_i and τ do not commute. Note that when this process stops, $6N < R \leq 7N$.

Lemma 4.10. At most two U_i survive this reduction process.

Proof. Suppose none of U_1, U_2, and U_3 R-overlap. Let a_1, a_2, a_3 be edges of U_1, U_2, U_3 respectively such that each a_i shares a wall with an edge of α_R. Since the process terminated, τ_1, τ_2, τ_3 are distinct and commute. But a_i does not commute with u_i for $i = 1, 2, 3$, and the pairs (a_i, u_i) all commute, so this gives a visual $(\mathbb{Z}_2 \ast \mathbb{Z}_2)^3$ in (W, S), a contradiction. \qed

We now have at most two directions U_1 and U_2 remaining. If there is no U_2, then to simplify notation for now, define $U_2 = U_1$.

If there is no geodesic extension of $\beta = (e_1, \ldots, e_m)$ that can be rearranged to form a bigon of width $16N^2$ with the down edge path of the diamond at x_m (Lemma 2.22) containing every wall of U_2, then we redefine $U_2 = U_1$, and similarly for U_1. If no geodesic extension of β can lead to a wide bigon in either direction, then an arbitrary filter (built as in the example in the beginning of this section) has “small” connected set limit set in ∂X.

Note that U_1 and U_2 have length at least $6N$. Now, if U_1 and U_2 share two walls with unrelated labels, then let $(\alpha_1, \alpha_2, \ldots)$ be a back combing from x_m to the endpoint of U_1, and choose an edge a in α_2 so that U_1 and U_2 both have edges in the same wall as a (such an edge exists by (5) of Remark 4.8). Let $U_1 = U_2$ be a shortest geodesic at x_m containing an edge in the same wall as a.

Remark 4.11. If $U_1 \neq U_2$, then U_1 and U_2 share less than N walls, and the sets $\text{lett}(U_1) - (\text{lett}(U_1) \cap \text{lett}(U_2))$ and $\text{lett}(U_2) - (\text{lett}(U_1) \cap \text{lett}(U_2))$ commute.

For this next remark, note that x_m is the $(m + 1)^{st}$ vertex of β (since \ast is the first).

Remark 4.12. If $U_1 \neq U_2$, (β, γ) is a Λ-geodesic and γ' is some rearrangement of (β, γ) whose $(m + 1)^{st}$ vertex is of distance at least $14N^2$ from x_m, then the
down edge path τ at x_m of the diamond (Lemma 2.22) for these two geodesics can be rearranged to begin with either U_1 or U_2, by Lemma 4.9. Both cannot initiate rearrangements of τ, since otherwise there is a $(\mathbb{Z}_2 \times \mathbb{Z}_2)^2$ in $\text{lett}(\tau)$, and the diamond at x_m containing τ determines a $(\mathbb{Z}_2 \times \mathbb{Z}_2)^3$ in (W,S).

Recall that $(e_1, e_2, \ldots, e_m, e_{m+1}, e_{m+2}, \ldots)$ and $(e_1, e_2, \ldots, e_m, d_{m+1}, d_{m+2}, \ldots)$ are geodesics in Λ $(c + d)$-tracking two CAT(0) geodesics in X, and x_m is the endpoint of (e_1, \ldots, e_m). Let x_i denote the endpoint of (e_1, \ldots, e_i) where $i > m$, and y_i denote the endpoint of d_i where $i > m$. Set $U^x_1 = U_1$ and construct U^x_2, U^y_1, U^y_2 exactly as above, by replacing x_m with x_i or y_i.

Let $\lambda = (\ell_1, \ell_2, \ldots, \ell_n)$ be a geodesic based at some x extending $(\beta, e_{m+1}, \ldots, e_i)$ (or based at y_i and extending $(\beta, d_{m+1}, \ldots, d_i)$), but not passing through e_{i+1} (d_{i+1}). Our goal is to classify the directions back toward \ast at the endpoint of λ in a way that gives us some correspondence between our direction(s) at x_i (y_i) and the direction(s) at the endpoint of λ. We’ll do this inductively, by corresponding directions at the endpoint of each edge of λ to the directions at the endpoint of the previous edge of λ. For what follows, let v denote the endpoint of ℓ_1.

1. If $U^x_1 = U^x_2$ and ℓ_1 commutes with $\text{lett}(U_1)$, then let $U^x_1(\ell_1) = U^x_2(\ell_1)$ be the edge path at v with the same labeling as U^x_1. Note that if ℓ_1 commutes with $\text{lett}(U_1)$, then $\ell_1 \notin \text{lett}(U_1)$, since (ℓ_1^{-1}, U_1) is geodesic.

2. If $U^x_1 = U^x_2$ and ℓ_1 does not commute with $\text{lett}(U^x_1)$, then set $U^x_1(\ell_1) = U^x_2(\ell_1) = (\ell_1^{-1}, U^x_1)$.

3. If $U^x_1 \neq U^x_2$, we construct directions from v back toward \ast just as we’ve done from x_m back toward \ast. If there is only one direction V_1, set $U^x_1(\ell_1) = U^x_2(\ell_1) = V_1$. If there are two directions V_1 and V_2, but there is no geodesic extension of $(\beta, e_{m+1}, \ldots, e_i, \ell_1)$ that can lead to a $16N^2$ wide bigon in the V_2 direction at v, then set $U^x_1(\ell_1) = U^x_2(\ell_1) = V_1$ (and similarly for V_1). If there is no geodesic extension that can lead to a wide bigon in either direction, then building arbitrary fans, as in the example at the beginning of this section, fills in this section of the filter with rays in X that are sufficiently close to our original two rays in X. Otherwise, take a geodesic extension γ of $(\beta, e_{m+1}, \ldots, e_i, \ell_1)$ so that a rearrangement of $(\beta, e_{m+1}, \ldots, e_i, \ell_1, \gamma)$ gives a $16N^2$ wide bigon at v whose down edge path of the diamond at v (Lemma 2.22) begins with V_1. By Remark 4.12, the down edge path of the diamond at x_i for this bigon can be rearranged to begin with either U^x_1 or U^x_2 (but not both). If it’s U^x_1 set $U^x_1(\ell_1) = V_1$ and $U^x_2(\ell_1) = V_2$, else set $U^x_1(\ell_1) = V_2$ and $U^x_2(\ell_1) = V_1$. It will be made clear by Lemma 4.16 that this choice does not depend on the choice of γ.

We now define $U^\ell_1(\ell_1, \ell_2)$ and $U^\ell_2(\ell_1, \ell_2)$ by replacing U^x_1 by $U^x_1(\ell_1)$ and U^x_2 by $U^x_2(\ell_1)$ in the above process, and continue repeating this process to define $U^\lambda_1(\lambda)$ and $U^\lambda_2(\lambda)$. Note that for any geodesic extension (λ_1, λ_2) of $(\beta, e_{m+1}, \ldots, e_i)$ that does not pass through e_{i+1}, if $U^\lambda_1(\lambda_1) = U^\lambda_2(\lambda_1)$, then $U^\lambda_1((\lambda_1, \lambda_2)) = U^\lambda_2((\lambda_1, \lambda_2))$.

Remark 4.13. From here on, when we mention a geodesic extension λ of $(\beta, e_{m+1}, \ldots, e_i)$ (or $(\beta, d_{m+1}, \ldots, d_i)$), we assume λ does not pass through e_{i+1} (d_{i+1}).

Lemma 4.14. Let λ be a geodesic extension of $(\beta, e_{m+1}, \ldots, e_i)$ (or $(\beta, d_{m+1}, \ldots, d_i)$) with $U^\lambda_1(\lambda) \neq U^\lambda_2(\lambda) (U^\lambda_1(\lambda) \neq U^\lambda_2(\lambda))$, and let (γ_1, γ_2) be any geodesic from the
endpoint of \(\lambda \) to \(*\). If \(|\gamma_1| \geq 7N^2\), then \((\gamma_1, \gamma_2)\) can be rearranged to begin with either \(U_1^{\gamma_1}(\lambda)\) or \(U_2^{\gamma_1}(\lambda)\).

Proof. This follows from the proof of Lemma 4.9 and the construction of the \(U_1^{\gamma_1}(\lambda)\).

\[\square\]

Remark 4.15. Remarks 4.11 and 4.12 apply to \(U_1^{\gamma_1}(\lambda)\) and \(U_2^{\gamma_1}(\lambda)\), whenever they are not equal.

Lemma 4.16. Suppose \(\lambda\) geodesically extends \((\beta, e_{m+1}, \ldots, e_i), e\) is an edge with \((\beta, e_{m+1}, \ldots, e_i, \lambda, e)\) geodesic, and \(U_1^{\gamma_1}(\lambda, e) \neq U_2^{\gamma_1}(\lambda, e)\), then \(U_1^{\gamma_1}(\lambda, e)\) and \(U_2^{\gamma_1}(\lambda, e)\) have at least \(6N - 3\) walls in common.

Proof. It suffices to show this for \(U_1(\lambda) = U_1^{\gamma_1}(\lambda)\) and \(U_2(\lambda) = U_2^{\gamma_1}(\lambda)\), as in the first step of our \(U_1(\lambda)\) construction. Let \(\gamma\) be the geodesic extension of \((\beta, \ell_1)\) used in the construction of the \(U_j(\lambda)\), so that there is a rearrangement \(\gamma'\) of \((\beta, \ell_1, \gamma)\) whose \((m + 2)^{\text{nd}}\) vertex is at \(16N^2\) from the endpoint of \((\beta, \ell_1)\). Let \(\tau\) be the down edge path at the endpoint of \(\ell_1\) for the diamond for these two geodesics, as in Lemma 2.22. Note \(|\tau| \geq 8N^2\). By Lemma 4.14 (and without loss of generality), \(\tau\) can be rearranged to begin with \(U_1(\ell_1)\). However, if \(\tau\) has an edge in the same wall as \(\ell_1\) then \(\tau\) can be rearranged to begin with \(\ell_1\), and so \((\ell_1, U_1)\). Otherwise, \(\tau\) can be rearranged to begin with \(U_1\), so either way every edge of \(U_1\) shares a wall with an edge of \(\tau\). Let \((\alpha_1, \ldots, \alpha_{6N-1})\) be a back combing from \(x_m\) to \(*\), choose an edge \(a_1\) of \(\alpha_{6N-1}\) that shares a wall with an edge of \(U_1(\ell_1)\), and pick an edge \(a_2\) of \(\alpha_{6N-2}\) whose label does not commute with \(\pi_1\) (so \(a_2\) also shares a wall with an edge of \(U_1(\ell_1)\)). Pick an edge \(b_1\) of \(\alpha_{6N-2}\) that shares a wall with an edge of \(U_1\), and pick an edge \(b_2\) of \(\alpha_{6N-3}\) whose label doesn’t commute with \(\bar{b}_1\). If neither \(b_1\) nor \(b_2\) have their walls on \(U_1(\ell_1)\), then the pair \(\pi_1, \pi_2\) commutes with the pair \(\bar{b}_1, \bar{b}_2\), and the up edge path at \(x_m\) for this diamond gives a third pair of unrelated elements that commute with the pairs \(\pi_1, \pi_2\) and \(\bar{b}_1, \bar{b}_2\), which is a contradiction.

Thus the wall of \(b_2\) must cross \(U_1(\ell_1)\), and so \(U_1(\ell_1)\) and \(U_1\) have at least \(6N - 3\) walls in common.

We claimed in the construction of the \(U_1^{\gamma_1}(\lambda)\) that Lemma 4.16 shows the association between \(U_1^{\gamma_1}\) and \(U_2^{\gamma_1}(\lambda)\) is independent of the choice of \(\gamma\). If the association depended on the choice of \(\gamma\), then by the above proof, \(U_1^{\gamma_1}(\ell_1)\) would have \(6N - 3\) walls in common with both \(U_1^{\gamma_1}\) and \(U_2^{\gamma_1}\). By Remark 4.11, \(\ell(\ell_1)\) must then contain a \((\mathbb{Z}_2 \ast \mathbb{Z}_2)^2\), meaning the walls of \(U_1^{\gamma_1}(\ell_1)\) cannot all appear on the down edge path at \(x_m\) of the diamond for a wide bigon, which is a contradiction.

This next lemma gives an important correspondence between the directions \(U_1^{\gamma_1}(\lambda_1)\) and \(U_2^{\gamma_1}(\lambda_1, \lambda_2)\).

Lemma 4.17. Let \((\lambda_1, \lambda_2, \lambda_3)\) be a geodesic extending \((\beta, e_{m+1}, \ldots, e_i)\) (not passing through \(x_{i+1}\)) with endpoint \(v_i\), let \(\tau\) be another \(\Lambda\)-geodesic from \(*\) and \(v_i\), let \(z_j\) and \(z_M\) denote the endpoints of \(\lambda_1\) and \(\lambda_2\), respectively, and suppose \(U_1^{\gamma_1}(\lambda_1, \lambda_2) \neq U_2^{\gamma_1}(\lambda_1, \lambda_2)\). Suppose \(R \geq 14N^2\) and every vertex \(z_j, z_{j+1}, \ldots, z_M\) of \(\lambda_2\) is of \(\Lambda\)-distance at least \(R\) from \(\tau\). If the down edge path of the diamond at \(z_j\) for \(\tau\) and \((\beta, e_{m+1}, \ldots, e_i, \lambda_1, \lambda_2, \lambda_3)\) can be rearranged to begin with \(U_1^{\gamma_1}(\lambda_1)\), then the down edge path of the diamond at \(z_M\) for these geodesics can be rearranged to begin with \(U_1^{\gamma_1}(\lambda_1, \lambda_2)\) (and similarly for \(U_2\)).
Proof. It suffices to show this for \(U_i^m((\lambda_1, \lambda_2)) = U_1((\lambda_1, \lambda_2)) \) when \((\lambda_1, \lambda_2, \lambda_3)\) is a geodesic based at \(x_m\), since the constructions are identical for each \(x_i\). Let \(\gamma_J\) and \(\gamma_M\) be the down edge paths at \(z_J\) and \(z_M\) respectively of the diamonds for \((\beta, \lambda_1, \lambda_2, \lambda_3)\) and \(\tau\), as given by Lemma 2.22. (See Figure 6.)

For each \(K\) with \(J < K < M\), let \(\lambda_K\) denote the initial segment of \((\lambda_1, \lambda_2)\) ending at \(z_K\). Suppose \(\gamma_J\) can be rearranged to begin with \(U_1(\lambda_1)\) but \(\gamma_M\) cannot be arranged to begin with \(U_1((\lambda_1, \lambda_2))\). There is then \(K\) with \(J < K < M\) where the down edge path \(\gamma_K\) at \(z_K\) of these geodesics can be rearranged to begin with \(U_1(\lambda_K)\) and the down edge path \(\gamma_{K+1}\) at \(z_{K+1}\) can be rearranged to begin with \(U_2(\lambda_{K+1})\), by Lemma 4.14. By Lemma 4.16 and since \(U_1(\lambda_{K+1}) \neq U_2(\lambda_{K+1})\), there is a pair of unrelated edge labels \(a_1, b_1\) of \(U_1(\lambda_K)\) that commute with some unrelated pair of labels \(a_2, b_2\) from \(U_2(\lambda_{K+1})\). Let \(\nu^K\) and \(\nu^{K+1}\) be the up edge paths of the diamonds at \(z_K\) and \(z_{K+1}\) respectively. From Lemma 2.22, these paths differ by at most two walls, and so they have two unrelated edge labels \(a_3\) and \(b_3\) in common. But then the pairs \((a_i, b_i)\) must all commute, giving a visual \((\mathbb{Z}_2 \ast \mathbb{Z}_2)^3\) in \(W\), a contradiction.

The proof of the next lemma basically follows that of Lemma 5.5 of [10].

Lemma 4.18. Let \(\lambda\) be a geodesic based at \(x_i\) extending \((\beta, e_{m+1}, \ldots, e_i)\) with endpoint \(v\), and let \(s\) and \(t\) be vertices of \(\Gamma\) not in \(B(v \to *)\). If \((\gamma_1, \gamma_2)\) is any rearrangement of \((\beta, e_{m+1}, \ldots, e_i, \lambda)\) where \((\text{lett}(\gamma_2))\) is infinite, then there is a path from \(s\) to \(t\) of length at least two in \(\Gamma\), none of whose vertices (except possibly \(s\) and \(t\)) are in \(\text{lk(lett}(\gamma_2)) \cup B(v \to *)\).

Proof. Since \((\beta, e_{m+1}, \ldots, e_i, \lambda)\) can be rearranged to end with \(\gamma_2\), for \(e \in B(v \to *)\), either \(\overline{e} \in \text{lett}(\gamma_2)\) or \(\overline{e} \in \text{lk(lett}(\gamma_2))\). To see that \(\text{lk(lett}(\gamma_2)) \cup B(v \to *)\) does not
separate $\Gamma(W,S)$, observe that otherwise G is not one-ended if $(\text{lk}(\text{lett}(\gamma_2)))$ is finite or $(\text{lk}(\text{lett}(\gamma_2)) \cup B(v \to *))$, $(\text{lk}(\text{lett}(\gamma_2)))$ is a virtual factor separator for Γ if $(\text{lk}(\gamma_2))$ is infinite.

If $s = t$ and $s \in \text{lk}(\text{lett}(\gamma_2))$, then there is a vertex $a \in \Gamma$ adjacent to s with $a \notin \text{lk}(\text{lett}(\gamma_2)) \cup B(v \to *)$, since $\text{lett}(\gamma_2)$ generates an infinite group and $B(v \to *)$ does not. If e is the edge between s and a, we use the path e followed by e^{-1}.

If $s = t$ and $s \notin \text{lk}(\text{lett}(\gamma_2))$, then there is a vertex $a \in \Gamma$ adjacent to s with $a \notin \text{lk}(\text{lett}(\gamma_2)) \cup B(v \to *)$, and $\text{lk}(\text{lett}(\gamma_2)) \cup B(v \to *)$, $(\text{lk}(\text{lett}(\gamma_2)))$ is a virtual factor separator for Γ. We construct the path as before.

If $s \neq t$, $s \notin \text{lk}(\text{lett}(\gamma_2))$ and no such path exists, then $(\text{lk}(\text{lett}(\gamma_2)) \cup B(v \to *))$, $(\text{lk}(\text{lett}(\gamma_2)))$ is a virtual factor separator for Γ. Note that if there is an edge e between s and t, we use the path e, e^{-1}, e to satisfy the length two requirement.

If $s \neq t$ and $s \in \text{lk}(\text{lett}(\gamma_2))$, then there is a vertex $a \in \Gamma$ adjacent to s with $a \notin \text{lk}(\text{lett}(\gamma_2)) \cup B(v \to *)$, since $\text{lett}(\gamma_2)$ generates an infinite group and $B(v \to *)$ does not. Now if $t \in \text{lk}(\text{lett}(\gamma_2)) \cup B(v \to *)$ we obtain a b adjacent to t with $b \in \text{lk}(\text{lett}(\gamma_2)) \cup B(v \to *)$ and we have a path between a and b as above (or, if $a = b$, we already had the path), or else we connect a and t as above. \hfill \square

Remark 4.19. Edge paths in Γ of the form (e, e^{-1}) and (e, e^{-1}, e) may seem unorthodox, but as in [10], they are combinatorially useful in the filter construction.

Remark 4.20. Note that $U_1^{\rho_i}(\lambda)^{-1}$ and $U_2^{\rho_i}(\lambda)^{-1}$ satisfy the hypotheses of γ_2 in the previous lemma.

Recall the filter construction presented near the beginning of this section, and notice that Lemma 4.18 gives us more control during the fan construction process: instead of avoiding only $B(v \to *)$ when choosing paths in $\Gamma(W,S)$ to construct a fan based at v, we can avoid $B(v \to *)$ together with $\text{lk}(\text{lett}(\gamma))$, where γ could potentially begin the down edge path of a diamond based at v. This is the key idea that allows us to keep the Cayley geodesics in our filter “straight” (in the CAT(0) sense), which makes the limit set of the filter small in ∂X. We’ll now specify our choice of γ at each vertex v in the filter.

Recall that W acts geometrically on a CAT(0) space X giving a map $C : \Lambda \to X$ (respecting the action of W). The Γ geodesics $(\beta, e_{m+1}, e_{m+2}, \ldots)$ and $(\beta, d_{m+1}, d_{m+2}, \ldots)$ $(c+d)$-track two CAT(0) geodesics in X as in Lemma 3.12, and x_i denotes the endpoint of $(\beta, e_{m+1}, \ldots, e_i)$, for $i \geq m$.

Definition 4.21. For each vertex v of Λ, let ρ_v be a Λ-geodesic from \ast to v such that $C(\rho_v)$ δ_1-tracks the X-geodesic from $C(\ast)$ to $C(v)$ (Lemma 3.11).

Definition 4.22. Suppose λ is a geodesic extending $(\beta, e_{m+1}, \ldots, e_i)$ for some $i \geq m$, and y and z are vertices of λ with $d(y, \ast) > d(y, \lambda) = k$. We say z is R–wide in the τ direction at y if the Λ-distance from y to $\rho_z(k)$ is at least R, and the down edge path at y of the diamond for $(\beta, e_{m+1}, \ldots, e_i, \lambda)$ and ρ_z can be rearranged to begin with τ. If z is the endpoint of λ, we say λ is R–wide in the τ direction at y.

Remark 4.23. Using the notation in the definition, if $y = x_i$ and $d(\rho_z(i), x_i) \geq 14N^2$, then z is $14N^2$-wide in either the $U_1^{\tau_z}$ or $U_2^{\tau_z}$ direction at x_i, by Lemma 4.14.

Let $\delta_0 = \max\{1, \delta_1, c + d\}$, where δ_1 is the tracking constant from Lemma 3.11, and c, d are the tracking constants from Lemma 3.12.
Let λ be a geodesic extending $(\beta, e_{m+1}, \ldots, e_i)$ for some $i \geq m$. Set $A^i = U^{w_i}_1$, and define $A^i(\lambda)$ as follows:

1. If $U^{w_i}_1(\lambda) = U^{w_i}_2(\lambda)$, then set $A^i(\lambda) = U^{w_i}_1(\lambda)$.
2. If $U^{w_i}_1(\lambda) \neq U^{w_i}_2(\lambda)$ and λ is not at least $20N^2\delta_0$ wide in the $U^{w_i}_1$ or $U^{w_i}_2$ direction at x_i, then set $A^i(\lambda) = U^{w_i}_1(\lambda)$.
3. If $U^{w_i}_1(\lambda) \neq U^{w_i}_2(\lambda)$ and λ is at least $20N^2\delta_0$ wide in the $U^{w_i}_1$ direction at x_i but less than $21N^2\delta_0$ wide in the $U^{w_i}_1$ direction at x_i, then set $A^i(\lambda) = U^{w_i}_1(\lambda)$ (and similarly for $U^{w_i}_2$).
4. If $U^{w_i}_1(\lambda) \neq U^{w_i}_2(\lambda)$ and λ is at least $21N^2\delta_0$ wide in the $U^{w_i}_1$ direction at x_i, then let λ_0 be the longest initial segment of λ such that λ_0 is at least $20N^2\delta_0$ wide in the $U^{w_i}_1$ direction at x_i but not $21N^2\delta_0$ wide in the $U^{w_i}_1$ direction at x_i. Then set $A^i(\lambda)$ to be a shortest geodesic based at the endpoint of λ containing an edge in each wall of $U^{w_i}_1(\lambda_0)$ (and similarly for $U^{w_i}_2$).

By Lemma 2.21, $A^i(\lambda)$ geodesically extends to $*$. At the endpoint of each such λ, we will construct fans avoiding $\text{lk}(\text{lett}(A^i(\lambda))) \cup B((\beta, e_{m+1}, \ldots, e_i, \lambda))$ as in Lemma 4.18.

The next lemma explains why the last step in the above process is significant.

Lemma 4.24. Let (λ_1, λ_2) be a geodesic extension of $(\beta, e_{m+1}, \ldots, e_i)$. Let τ be a shortest geodesic based at the endpoint of λ_2 containing an edge in each wall of $U^{w_i}_1(\lambda_1)$. If e is an edge that geodesically extends $(\beta, e_{m+1}, \ldots, e_i, \lambda_1, \lambda_2)$ with $\bar{e} \notin \text{lk}(\text{lett}(\tau))$, then for any geodesic extension γ of $(\beta, e_{m+1}, \ldots, e_i, \lambda_1, \lambda_2, e)$ and any rearrangement γ' of $(\beta, e_{m+1}, \ldots, e_i, \lambda_1, \lambda_2, e, \gamma)$, no edge in $w(e)$ can appear on the up edge path at the endpoint of λ_1 of the diamond for $(\beta, e_{m+1}, \ldots, e_i, \lambda_1, \lambda_2, e, \gamma)$ and γ' if the down edge path at the endpoint of λ_1 contains edges in all the walls of $U^{w_i}_1(\lambda_1)$.

Proof. Suppose not; i.e., there is a geodesic extension γ of $(\beta, e_{m+1}, \ldots, e_i, \lambda_1, \lambda_2, e)$ and a rearrangement γ' of $(\beta, e_{m+1}, \ldots, e_i, \lambda_1, \lambda_2, e, \gamma)$ such that an edge e' of $w(e)$ appears on the up edge path at the endpoint of λ_1 of the diamond for these geodesics, and the down edge path at the endpoint of λ_1 contains edges in all the walls of $U^{w_i}_1(\lambda_1)$. Then $w(e') = w(e)$ crosses all walls of $U^{w_i}_1(\lambda_1)$. Let c_1 be an edge of τ such that \bar{e} does not commute with \bar{c}_1. In particular, $w(c_1)$ is not a wall of $U^{w_i}_1(\lambda_1)$. By the definition of τ, there is an edge c_2 of τ, following c_1, such that \bar{c}_2 does not commute with \bar{c}_1. The walls $w(c_2)$ and $w(e)$ are on opposite sides of $w(c_1)$ (see Remark 2.18), so they do not cross. In particular, $w(c_2)$ is not a wall of $U^{w_i}_1(\lambda_1)$. Clearly we can continue picking c_i in such a way, but since the length of τ is finite, this process must stop. This gives the desired contradiction.

Remark 4.25. Note that Lemma 4.24 does not require that $U^{w_i}_1(\lambda_1) \neq U^{w_i}_2(\lambda_1)$ or $U^{w_i}_1((\lambda_1, \lambda_2)) \neq U^{w_i}_2((\lambda_1, \lambda_2))$. It is easy to show from our construction that if $U^{w_i}_1(\lambda_1) = U^{w_i}_2(\lambda_1)$, then τ (as defined in Lemma 4.24) has the same walls as $U^{w_i}_1((\lambda_1, \lambda_2)) = U^{w_i}_2((\lambda_1, \lambda_2))$, and so avoiding $\text{lk}(\text{lett}(A^i(\lambda)))$ has the effect that no wall of λ_2 can contain an edge of an up edge path at the endpoint of λ_1 for a diamond as described in Lemma 4.24.

For a geodesic extension λ of $(\beta, d_{m+1}, \ldots, d_i)$, we define $A^i_\delta(\lambda)$ in the analogous way. To simplify notation, we will only deal with geodesic extensions λ of $(\beta, e_{m+1}, \ldots, e_i)$, except where necessary.
We now return to the filter construction. Set \(a_1 = \tau_{m+1} \) and \(b_1 = \overline{d}_{m+1} \). We have \(a_1, b_1 \notin B(x_m \to *) \), so let \(a_1, t_1, \ldots, t_k, b_1 \) be the vertices of a path of length at least 2 (Lemma 4.18) from \(a_1 \) to \(b_1 \) in \(\Gamma(W, S) \), where each \(t_i \notin \text{lk}(\text{lett}(A^m)) \cup B(x_m \to *) \).

We construct a fan in \(\Lambda \) as before:

![Figure 7](image)

Figure 7

Definition 4.26. The edges labeled \(a_1 \) and \(b_1 \) at \(x_m \) in the fan are called (respectively) the *left* and *right fan edges* at \(x_m \). The edges labeled \(t_1, \ldots, t_k \) at \(x_m \) are called *interior fan edges*. This fan is called the *first-level* fan, and the vertices at the endpoints of the edges based at \(x_m \) and labeled \(x_m, t_1, \ldots, t_k, y_{m+1} \) are called *first-level* vertices.

Now, let \(a_2 = \tau_{m+2} \), \(b_2 = \overline{d}_{m+2} \) and let \(w_i \) be the edge at \(x_m \) labeled \(t_i \) for \(1 \leq i \leq k \). Continue constructing the filter by constructing fans avoiding \(\text{lk}(\text{lett}(A^m((w_i)))) \cup B((\beta, w_i)) \) at the endpoint of each \(w_i \), avoiding \(\text{lk}(\text{lett}(A^{m+1})) \cup B(x_{m+1} \to *) \) at \(x_{m+1} \), and avoiding \(\text{lk}(\text{lett}(A_{d}^{m+1})) \cup B(y_{m+1} \to *) \) at \(y_{m+1} \). Each of these fans is called a *second-level* fan, and each vertex of distance 2 from \(x_m \) (that will be the base vertex of a third-level fan) is called a *second-level* vertex.
It could occur that two edges of this graph share a vertex and are labeled the same; for example, we could have $t_1 = a_2$ in Figure 8. We do not identify these edges; instead, we will construct an edge path between them as described in Lemma 4.18 and extend the graph between them.

In order to build the third-level fans, we must specify geodesics from x_m to each vertex defined so far, so that $A'(\lambda)$ is well-defined at each second-level vertex. We’ll do this by picking the upper left edge from each first-level fan-loop to be a non-tree edge. This specifies a geodesic from x_m to each second-level vertex. We designate the upper right edge from each second-level fan as a non-tree edge, and continue alternating at each level, so the upper right edge of a n-th level fan is a non-tree edge if n is even, and the upper left edge of a n-th level fan is a non-tree edge if n is odd. By continuing to construct fans and designate non-tree edges, we construct a filter for our Λ-geodesics $(\beta, e_{m+1}, e_{m+2}, \ldots)$ and $(\beta, d_{m+1}, d_{m+2}, \ldots)$.

Recall that for an edge a of $\Lambda(W, S)$ with initial vertex y_1 and terminal vertex y_2, an edge e with initial vertex w_1 and terminal vertex w_2 is in the same wall as a if there is an edge path (t_1, \ldots, t_n) in $\Lambda(W, S)$ based at w_1 so that $w_1 t_1 \cdots t_n = y_1$ and $w_2 t_1 \cdots t_n = y_2$, and $m(t_i, \bar{t}_i) = 2$ for each $1 \leq i \leq n$. For two edges a and e of F, we say a and e are in the same filter wall if there is such a path (t_1, \ldots, t_n) in F.

Remark 4.27. The following are useful facts about a filter F for two such geodesics ((1)-(5) from [10]):

1. Each vertex v of F has exactly one or two edges beneath it, and there is a unique fan containing all edges (a left and right fan edge, and at least one interior edge) above v. We would not have this fact if we allowed association of same-labeled edges at a given vertex.

2. If a vertex of F has exactly one edge below it, then the edge is either e_i (for some i), d_i (for some i), or an interior fan edge.
If a vertex of F has exactly two edges below it, then one is a right fan edge (the one to the left), and one is a left fan edge, and both belong to a single fan loop.

F minus all non-tree edges is a tree containing $(\beta, e_{m+1}, e_{m+2}, \ldots)$ and $(\beta, d_{m+1}, d_{m+2}, \ldots)$ and all interior edges of all fans.

If T is the tree obtained from F by removing all non-tree edges, then there are no dead ends in T; i.e. for every vertex v of T, there is an interior edge extending from v.

No two consecutive edges of T not on $(\beta, e_{m+1}, e_{m+2}, \ldots)$ or $(\beta, d_{m+1}, d_{m+2}, \ldots)$ are right (left) fan edges.

If λ is a geodesic in F extending $(\beta, e_{m+1}, \ldots, e_i)$ (and not passing through x_{i+1}), then λ shares at most one filter wall with $(e_{i+1}, e_{i+2}, \ldots)$, and it is the wall of e_{i+1}.

By rescaling, we may assume the image of each edge of Λ under C is of length at most 1 in X. Then for vertices v and w of Λ, $d_{\Lambda}(v, w) \geq d_X(C(v), C(w))$.

Lemma 4.28. If $(\beta, e_{m+1}, \ldots, e_i, \lambda)$ is geodesic in the tree T with endpoint v and $U_1^{x_i}(\lambda) \neq U_2^{x_i}(\lambda)$, then some point on the CAT(0) geodesic between $C(v)$ and $C(*)$ is within X-distance $101N^2\delta_0$ of $C(x_i)$.

Proof. Suppose otherwise; then the endpoint v of λ is at least $100N^2\delta_0$ wide at x_i, and so suppose v is wide in the $U_1^{x_i}$ direction at x_i. Choose the last vertex w on λ such that w is between $20N^2\delta_0$ and $21N^2\delta_0$ wide in the $U_1^{x_i}$ direction at x_i, so that every vertex between v and w on λ is at least $21N^2\delta_0$ wide in the $U_1^{x_i}$ direction at x_i. Let λ_w be the segment of λ starting at x_i and ending at w. We will show that v is wide in the $U_1^{x_i}(\lambda_w)$ direction at w and that v cannot be wide in the $U_1^{x_i}(\lambda_w)$ direction at w, obtaining a contradiction.

Claim 1: The vertex v is wide in the $U_1^{x_i}(\lambda_w)$ direction at w.

Recall that ρ_w and ρ_v are Λ-geodesics δ_1-tracking the X-geodesics from $C(*)$ to $C(w)$ and $C(v)$ respectively. By CAT(0) geometry, ρ_v is at least $75N^2\delta_0$ wide at w, since w is less than $21N^2\delta_0$ wide at x_i. Consider Figure 9, with diamonds for these geodesics as in Lemma 2.22:
Let \(y \) be the endpoint of the up edge path of the diamond at \(x_i \) for \(\rho_w \) and \((\beta, e_{m+1}, \ldots, e_i, \lambda_w)\), and let \(\gamma_0 \) be any geodesic from \(y \) to \(w \). A simple van Kampen diagram argument shows that there is a rearrangement \(\gamma_1 \) of \(\gamma_0 \) such that if \(w(c_1), w(c_2), \ldots, w(c_n) \) are the walls of the edges of \(\gamma_0 \), then \(\gamma_1 \) crosses these walls in the same order as \(\rho_w \). Let \(\gamma \) be any geodesic from \(x_i \) to \(y \) followed by \(\gamma_1 \). By Lemma 2.22, it is clear that each vertex \(x \) of \(\gamma \) is of \(\Lambda \)-distance less than \(21N^2 \delta_0 \) from the corresponding vertex \(x' \) of \(\rho_w \) (satisfying \(d(x,*) = d(x',*) \) in \(\Lambda \)). Therefore \(\gamma \) is of \(\Lambda \)-distance at least \(54N^2 \delta_0 \) from \(\rho_v \). Now, if no vertex of \(\lambda_w \) is within \(\Lambda \)-distance \(14N^2 \delta_0 \) of the corresponding vertices on \(\rho_v \), then by Lemma 4.17 (with \(\lambda_1 \) trivial), \(v \) is \(75N^2 \delta_0 \) wide in the \(U^{x_1}_1(\lambda_w) \) direction at \(w \), as claimed. Suppose there are vertices of \(\lambda_w \) within \(\Lambda \)-distance \(14N^2 \) of the corresponding vertices on \(\rho_v \), and list the consecutive points \(z_1, \ldots, z_\ell \) of \(\lambda_w \) (with \(z_1 \) closest to \(x_i \)) where each \(z_j \) has the property that if \(g_j \) and \(m_j \) are the points on \(\gamma \) and \(\rho_v \) respectively with \(d(z_j,*) = d(g_j,*) = d(m_j,*) \), then \(|d(z_j,g_j) - d(z_j,m_j)| < N \) (so each \(z_j \) is almost \(\Lambda \)-equidistant from its corresponding points on \(\gamma \) and \(\rho_v \)). Let \(\lambda_{z_j} \) denote the initial segment of \(\lambda_w \) ending at each \(z_j \). Now, \(\rho_v \) (equivalently \(v \)) is wide in the \(U^{z_1}_1(\lambda_{z_1}) \) direction at \(z_1 \), since \(\lambda_w \) has not yet passed close to \(\rho_v \). Now consider the down edge path of the diamond at \(z_1 \) for \(\lambda_w \) and \(\gamma \); this path is of length more than \(7N^2 \) and must have edges in all the walls of \(U^{z_1}_2(\lambda_{z_1}) \) (Lemma 4.14), else by Lemma 2.24, \(\gamma \) and \(\rho_v \) would be close. Now, if \(\rho_v \) is wide in the \(U^{z_1}_2(\lambda_{z_2}) \) direction at \(z_2 \), then the down edge path at \(z_2 \) for the diamond for \(\lambda_w \) and \(\gamma \) must have edges in all the walls of \(U^{z_1}_1(\lambda_{z_2}) \); however, by Lemma 4.17, at most one of these directions
could have switched, since \(\lambda \) does not pass close to one of \(\rho, \gamma \) between \(z_1 \) and \(z_2 \). Continuing this argument along the \(z_i \) shows that \(v \) is wide in the \(U_{i+1}^x(\lambda_w) \) direction at \(w \), as claimed.

Claim 2: The vertex \(v \) cannot be wide in the \(U_{i+1}^x(\lambda_w) \) direction at \(w \).

Note that no interior fan edges on \(\lambda \) between \(v \) and \(w \) can have walls appearing on the up edge path of a \(U_{i+1}^x(\lambda_w) \) diamond at \(w \) by Lemma 4.24, since all of these edges have labels chosen to avoid \(\text{lk}(\text{let}(U_{i+1}^x(\lambda_w), \ldots))) \). Also note that if the first edges of \(\lambda \) after \(\lambda_w \) are a right fan edge followed by a left fan edge, the left fan edge shares a wall with an interior fan edge adjacent to \(\lambda \), and so it was also chosen to avoid \(\text{lk}(\text{let}(U_{i+1}^x(\lambda_w), \ldots))) \), and no edge in its wall can appear on a \(U_{i+1}^x(\lambda_w) \) diamond at \(w \) (and similarly for a left fan edge followed by right fan edge). The same analysis holds for any right or left fan edge appearing after an interior fan edge (except for at most one edge of \(\lambda \), which could share a wall with a right/left fan edge based at \(w \)). Thus the only way \(\lambda \) can have enough edges in the same walls as edges on the up edge path of a \(U_{i+1}^x(\lambda_w) \) diamond is if a large sequence of the edges of \(\lambda \) immediately after \(\lambda_w \) are all right fan edges or all left fan edges, which cannot happen by (6) of Remark 4.27. Thus \(v \) is not wide in the \(U_{i+1}^x(\lambda_w) \) direction at \(x_i \), which gives the desired contradiction.

Lemma 4.29. If \(\lambda \) is a geodesic in the tree \(T \) with endpoint \(v \) that extends \((\beta, e_{m+1}, \ldots, e_i) \) and \(U_{i+1}^x(\lambda) = U_{i+1}^y(\lambda) \), then some point on the CAT(0) geodesic between \(C(v) \) and \(C(*) \) is within \(X \)-distance \(118N^2\delta_0 \) of \(C(x_i) \).

Proof. Let \(\lambda_w \) be the shortest initial segment of \(\lambda \) such that \(U_{i+1}^x(\lambda_w) = U_{i+1}^y(\lambda_w) \), and let \(w \) be the endpoint of \(\lambda_w \). By Lemma 4.28, the CAT(0) geodesic between \(C(w) \) and \(C(*) \) comes within \(X \)-distance \(101N^2\delta_0 \) of \(C(x_i) \). Note that if the CAT(0) geodesic between \(C(v) \) and \(C(*) \) is more than \(17N^2\delta_0 \) from \(C(w) \), then \(v \) (equivalently \(\lambda \)) is at least \(16N^2\delta_0 \) wide in the \(U_{i+1}^x(\lambda_w) \) direction at \(w \). When \(U_{i+1}^x(\lambda_w) = U_{i+1}^y(\lambda_w) \) we have the following cases:

Case 1: No geodesic extension of \((\beta, e_{m+1}, \ldots, e_i, \lambda_w) \) leads to a bigon \(16N^2 \) wide at \(w \).

In this case, \(\lambda \) is not \(16N^2 \) wide in any direction at \(w \), so by CAT(0) geometry, some point on the CAT(0) geodesic between \(C(v) \) and \(C(*) \) is within \(X \)-distance \(118N^2\delta_0 \) of \(C(x_i) \).

Case 2: For any geodesic \(\mu \) from \(* \) to the endpoint of \((\beta, e_{m+1}, \ldots, e_i, \lambda) \), if the bigon determined by \(\mu \) and \((\beta, e_{m+1}, \ldots, e_i, \lambda) \) is \(16N^2 \) wide at \(w \), then it is wide in the \(U_{i+1}^x(\lambda_w) \) direction at \(w \).

From Lemma 4.24, Remark 4.25, and our filter construction, we know that any interior edge on \(\lambda \) after \(w \) cannot have its wall on the up edge path of a \(U_1(\lambda_w) \) diamond at \(w \). If the first edges of \(\lambda \) after \(w \) are a right fan edge followed by a left fan edge, the left fan edge shares a wall with an interior fan edge adjacent to \(\lambda \), and so the left fan edge also cannot have an edge in its wall on the up edge path of a \(U_1(\lambda_w) \) diamond at \(w \). The same analysis holds for any left or right fan edge following an interior fan edge (except for at most one edge of \(\lambda \), which could share a wall with a right/left fan edge based at \(w \)). Thus by (6) of Remark 4.27, \(\lambda \) cannot be \(16N^2 \) wide in the \(U_1(\lambda_w) \) direction at \(w \), so some point on the CAT(0) geodesic between \(C(v) \) and \(C(*) \) is within \(X \)-distance \(118N^2\delta_0 \) of \(C(x_i) \).
Suppose X is a CAT(0) space, $\ast \in X$ a base point and $B_n(\ast)$ the open n-ball about \ast. Let \mathcal{X} be the compact metric space $X \cup \partial X$. If F is a filter in X, let \overline{F} be the closure of F in \mathcal{X}. Since F is connected, \overline{F} is connected. Since F is one-ended, $\overline{F} - F$ (the limit set of F) is contained in C_n, a component of $\overline{F} - B_n(\ast)$, for each $n > 0$. Then $\overline{F} - F = \cap_{n=1}^{\infty} C_n$ is the intersection of compact connected subsets of a metric space and so is connected.

Theorem 4.30. Suppose (W,S) is a one-ended right-angled Coxeter system, $\Gamma(W,S)$ contains no visual subgroup isomorphic to $(\mathbb{Z}_2 * \mathbb{Z}_2)^3$, and W does not visually split as $(\mathbb{Z}_2 * \mathbb{Z}_2) \times A$. Then W has locally connected boundary iff $\Gamma(W,S)$ does not contain a virtual factor separator.

Proof. If (W,S) has a virtual factor separator, then by [10], W has non-locally connected boundary. Suppose W acts geometrically on a CAT(0) space X, and let r be a CAT(0) geodesic ray based at a point \ast of X. Let $\epsilon > 0$ be given. We find δ such that if s is a geodesic ray within δ of r in ∂X, then our filter for r and s has (connected) limit set of diameter less than ϵ in ∂X. In what follows, the constants c and d are the tracking constants from Lemma 3.12, δ_1 is the tracking constant from Lemma 3.11, and $\delta_0 = \max\{1, \delta_1, c + d\}$. Recall $C : \Lambda(W,S) \rightarrow X$ W-equivariantly, and suppose for simplicity $C(\ast) = \ast$. Choose M large enough so that for all $m \geq M - c - d$, if s is an X-geodesic ray based at \ast within $120N^2\delta_0$ of $C(\beta(m))$ for any Cayley geodesic β that δ_0-tracks r, then r and s are within $\epsilon/2$ in ∂X. Choose δ so that if r and s are within δ in ∂X, then r and s satisfy $d(r(M), s(M)) < 1$. Now, if r and s are within δ in ∂X, by Lemma 3.12, r and s can be δ_0-tracked by Cayley geodesics α_r and α_s sharing an initial segment of length at least $M - c - d$. Let $m = M - c - d$ and denote the “split point” of α_r and α_s by x_m, as in the filter construction. Similarly, let $\alpha_r(i) = x_i$ and $\alpha_s(i) = y_i$ for $i \geq m$. By the previous two lemmas, for any vertex v in the filter F for α_r and α_s, the X-geodesic from $C(v)$ to \ast passes within $118N^2\delta_0$ of $C(x_i)$ (or $C(y_i)$), where $i \geq m$. By CAT(0) geometry, this geodesic must also pass within $119N^2\delta_0$ of $C(x_m)$. Thus every geodesic ray in the limit set of $C(F)$ is within $\epsilon/2$ of r in ∂X, so this set has diameter less than ϵ in ∂X. \qed

5. **Two Interesting Examples**

Let (W,S) be the (one-ended) right-angled Coxeter system with presentation graph Γ give by Figure 10:
Let \(A = \{a_1, a_2\} \), \(B = \{b_1, b_2\} \), \(C = \{c_1, c_2\} \), \(D = \{d_1, d_2\} \) and \(E = \{e_1, e_2\} \).

It is not hard to check that \(\Gamma \) has no virtual factor separator, \((W,S) \) does not visually split as a direct product and that \((W,S) \) has no visual \(\mathbb{Z}_2 * \mathbb{Z}_2 \). However, \(\Gamma \) contains product separators: for example, \(A \cup D \) commutes with \(E \), and \(A \cup D \cup E \) separates \(x_e \) from the rest of \(\Gamma \).

Corollary 5.7 of [9] gives specific conditions for when the boundary of a right-angled Coxeter group is non-locally connected:

Corollary 5.1. Suppose \((W,S)\) is a right-angled Coxeter system. Then \(W\) has non-locally connected boundary if there exist \(v, w \in S\) with the following properties:

1. \(v\) and \(s\) are unrelated in \(W\), and
2. \(\text{lk}(v) \cap \text{lk}(w)\) separates \(\Gamma(W,S)\), with at least one vertex in \(S - \text{lk}(v) \cap \text{lk}(w)\) other than \(v\) and \(w\).

In particular, they show that if such \(v, w\) exist, then \((vw)\) is a point of non-local connectivity in any CAT(0) space acted on geometrically by \(W\). Note that if \(v, w\) exist as in this corollary, then \((\text{lk}(v) \cap \text{lk}(w)), \text{lk}(v) \cap \text{lk}(w))\) is a virtual factor separator for \(\Gamma(W,S)\).

Let \(G_1 = \langle S - x_a \rangle\). Note that \(\text{lk}(e_1) \cap \text{lk}(e_2) = A \cup D \cup \{x_e\}\) separates \(e_2\) from the rest of \(\Gamma(G_1, S - \{x_a\})\), so \(G_1\) has non-locally connected boundary, with \((e_1e_2)\) a point of non-local connectivity for \(G_1\). Similarly, let \(Q = A \cup B \cup E\) and let \(G_2 = \langle Q \cup \{x_a\}\rangle\). Then \(\text{lk}(e_1) \cap \text{lk}(e_2) = A \cup D \cup \{x_e\}\) separates \(e_1\) from the rest of \(\Gamma(G_2, Q \cup \{x_a\})\), and so \(G_2\) also has non-locally connected boundary,
also with \((e_1e_2)\infty\) a point of non-local connectivity. Note that we now have \(W = G_1 *_Q G_2\), where \(\partial G_1\) and \(\partial G_2\) have \((e_1e_2)\infty\) as a point of non-local connectivity and \(Q\) contains \(e_1\) and \(e_2\), so it would seem that \(\partial W\) should also have \((e_1e_2)\infty\) as a point of non-local connectivity. However, our theorem implies \(W\) has locally connected boundary.

For our second example consider the right-angled Coxeter group \((G, S)\) with presentation graph of Figure 11.

![Figure 11](image)

Let \(A = \{a_1, \ldots, a_6\}\) and \((G', S')\) have the same presentation graph as \((G, S)\) but with each vertex \(v\) labeled \(v'\). Let \((W, S)\) be the right-angled Coxeter group of the amalgamated product \(G *_{A=A'} G'\) (where \(S = \{x, x', y, y', z, z', A\}\), and \(\{x, x'\}\) commutes with \(A\)). Both \(G\) and \(G'\) are word hyperbolic and one-ended so they have locally connected boundary. The subgroup \((A)\) of \(G\) is virtually a hyperbolic surface group and so determines a circle boundary in the boundary of \(G\). Still, \(W\) has non-locally connected boundary since \((A,A)\) is a virtual factor separator for \((W, S)\).

Aside from being rather paradoxical, these examples show that boundary local connectivity of right-angled Coxeter groups is not accessible through graphs of groups techniques.

6. A Final comment

If the hypothesis that no \((\mathbb{Z}_2 * \mathbb{Z}_2)^3\) is removed in an attempt to classify all right-angled Coxeter group with locally connected boundary, much of what we develop in this paper carries through. Finitely many directions (as opposed to two) can be defined and used to measure how large the limit set of a filter becomes. As with our development, if the filter starts to becomes large in a certain direction at a vertex, it is possible to force the subsequent vertices of the filter to slant in any of the other directions. But when there are only two directions, as in this paper, we are able to show that when we go from being slightly wide in one direction to slightly wide in the other, then the filter did not get too wide in either direction. When there
are more than two directions, CAT(0) geometry of right-angled Coxeter groups is
not well enough understood yet to accomplish the same thing. It may be that the
notion of a slope (or ratio of movement in the various directions) can be developed
to overcome this problem.

References

Department of Mathematics, Vanderbilt University, Nashville, TN 37240
E-mail address: w.camp@vanderbilt.edu, michael.l.mihalik@vanderbilt.edu