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Abstract

We study top trading cycles in a two-sided matching environment (Abdulkadiroglu

and Sonmez (2003)) under the assumption that individuals’ preferences and objects’

priorities are drawn iid uniformly. We show that the number of individuals/objects

assigned at each round follows a simple Markov chain and we explicitly derive the

transition probabilities. This Markov property is used to shed light on the role pri-

orities play in TTC. We show that, as the market grows large, the effect of priorities

in TTC disappears, leading in the limit to an assignment that entails virtually the

same amount of justified envy as does RSD.

JEL Classification Numbers: C70, D47, D61, D63.

Keywords: Random matching markets, Markov property.

1 Introduction

Top Trading Cycles (TTC) algorithm, introduced by Abdulkadiroglu and Sonmez (2003)

in a prioritirized resource allocation, has been an influential method for achieving efficient

outcomes particularly in school choice environments. For instance, TTC was used until

recently in New Orleans school systems for assigning students to public high schools and
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recently San Francisco school system announced plans to implement a top trading cycles

mechanism. A generalized version of TTC is also used for kidney exchange among donor-

patient pairs with incompatible donor kidneys (see Sonmez and Unver (2011)).

The TTC assigns agents efficiently based on their preferences and is strategyproof,

providing them with the incentive to report truthfully as dominant strategy. These qualities

are not unique to TTC, however. Serial dictatorship (SD), where the agents take turns in

claiming objects one at a time according to a serial order, and its random variant, Random

Serial Dictorship (RSD), where SD is run with randomly chosen serial order, guarantee

Pareto efficiency and strategyproofness. Instead, the unique distinction of TTC lies with

its use of agents’ priorities in resource allocation. For example, Boston public schools

system prioritizes a student based on his/her sibling or walkzone status; New York city

public schools use a student’s academic performances, the borough of her residence, and

registration in a school’s annual information session, among other things, for the same

purpose, depending on the school’s types. Housing allocation and organ exchanges also

have similar priority system based on a number of factors. Respecting agents’ priorities—

defined formally as ensuring that each agent weakly prefers her assignment to any other

potential choice (e.g., school seat, housing, an organ) either unassigned or assigned to

an agent with lower priority—is an important desideratum. This is also desirable from

the fairness standpoint, for it eliminates justified envy (Balinski and Sönmez (1999) and

Abdulkadiroglu and Sonmez (2003))—namely, an agent envying another despite having

higher priority at the latter’s assignment.

Unlike SD or RSD which completely ignores agents’ priorities, TTC explicitly uses them

for allocation: at each round, agents enjoying the highest priorities for objects available

at that round may trade their priorities to obtain their preferred objects. In particular,

the agent with the highest priority for an object may claim that object, if she so chooses,

ahead of all other agents who may also desire it. This feature makes one hopeful that

TTC may do well in respecting priorities, at least among those that satisfy efficiency

and strategyproofness. Indeed, Abdulkadiroglu, Che, Pathak, Roth, and Tercieux (2017)

demonstrates that among this class of mechanisms, TTC is justified envy minimal—namely

no other efficient and strategyproof mechanism reduces the set of agents with justified envy.

By contrast, the SD is not justified envy minimal in the same sense, regardless of how the

serial order is chosen. Still, a direct comparison between TTC and RSD in terms of justified

envy is difficult, since one can find profiles of priorities and preferences for which TTC admit

more (expected) incidences of justified envy than does RSD.1 Nevertheless, Abdulkadiroglu,

1Consider an instance with three students and three schools each with a single seat. Preferences of

individuals i ∈ {i1, i3} are o1 �i o2 �i o3 while preferences for individual i2 are o2 �i2 o1 �i2 o3. Objects’
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Che, Pathak, Roth, and Tercieux (2017) demonstrate that, for each profile of preferences,

TTC admits fewer incidences of justified on average than RSD, when average is taken with

respect to all possible profiles of priorities; or equivalently, TTC admits probilistically less

justified envy than RSD, when the agents’ priorities are drawn uniform randomly.

Just how well does TTC do in respecting priorities? Namely what is the “quantitative”

significance of the benefit TTC yields in respecting priorities say over and above RSD?

The aforementioned characterization is silent on this question. A main contribution of

this paper is to demonstrate that, at least for some canonical environment, the answer to

this question is in the negative. Consider a classic one-to-one matching environment with

n agents and n objects, where the agents’ preferences and their priorities for objects are

drawn iid uniformly. We show that as the economy grows large with n→∞, the outcome

of TTC in terms of the joint distribution of preference ranks enjoyed by the agents and

their realized priorities becomes asymptotically equivalent to that under the RSD.2 This

means, among other things, that TTC does virtually no better in respecting priorities than

does RSD. More precisely, the proportion of agents with justified envy (or those whose

priorities are respected) under TTC becomes indistinguishable from that under RSD, both

from the average and probabilistic senses.

The reason for this striking result is explained by the particular way in which TTC

uses agents’ priorities for allocating objects. If an object is assigned via a short cycle—or a

cycle in which an agent points to an object and the object in turn points to that agent—,

then the acquiring agent is likely to have high priority, so it is impossible that somebody

else’s priority for that object is violated. The matters are quite different, however, if an

object is assigned via a long cycle, or a cycle of length more than 2. In that case, the

acquiring agent has no a priori reason to have a higher priority compared with any other

agent who may also like that object; the only distinction is that the former has a priority

that she can exchange eventually with somebody who has the high priority for the object in

question. Hence, any object o assigned via a long cycle is assigned uniform-randomly across

priorities in turn are given by i2 �o1 i3 �o1 i1 and i1 �o2 i3 �o2 i2. We don’t need to specify the priority

ranking for object o3. If we run TTC, we end up with i1 and i2 getting their top choices (trading their

priorities) while i3 gets o3. There are two blocking pairs (i3, o1) and (i3, o2). Now, let us consider RSD. If

the realization of the serial order has i3 in last position one gets exactly the same outcome as with TTC

and so two blocking pairs. More generally, one can easily check that for any realized serial order there are

either one or two blocking pairs. So, in particular, the expected number of blocking pairs under RSD is

actually smaller than the number of blocking pairs under TTC.
2The well-known equivalence result of Carroll (2014) means that the marginal distribution of the ranks

enjoyed by agents are identical between the two mechanisms. As will be noted below, however, the joint

distribution of agents’ preference ranks and their priorities are distinct in the finite economy.
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all agents whose priority ranks are below the priority rank R∗(o) of the agent o points to

at the round of its assignment. Our irrelevance result is a consequence of the findings that,

as the market grows large, (i) the proportion of objects assigned via short cycles out of all

objects assigned vanishes in probability and (ii) R∗(o)/n’s tend to zero for all objects o’s,

except for a proportion vanishing in probability. In other words, TTC allocates virtually

all objects via long cycles rather than short cycles and all objects point to virtually top

(more precisely sublinear) priority agents when they are assigned, and these are why the

priorities become virtually irrelevant in a large market.

We argue that the irrelevance is robust to the introduction of correlation in agents’

preferences. Irrelevance also extends to many-to-one matching but only when the number

of copies per each object type grows sufficiently slowly as the economy grows large. Impor-

tantly, irrelevance does not extend when the number of copies for each object type grows

fast, in which case TTC performs significantly better than RSD in respecting priorities,

as pointed out by Abdulkadiroglu, Che, Pathak, Roth, and Tercieux (2017). Hence, our

ultimate contribution is to clarify the circumstances in which TTC’s use of priorities are

relevant in the large market.

While our irrelevance result appears intuitive, its proof requires a deep and precise

characterization of how the TTC allocates objects in our random model. A crucial step is

to establish a Markov property: the number of objects assigned at any round of TTC follows

a simple Markov chain, with the number depending only on the number of agents and objects

at the beginning of that round in a well-specified manner. We further exhibit the formula

for the transition probabilities governing the Markov chain. The Markov characterization

allows us to show that TTC algorithm terminates in the number of rounds which is sublinear

in n. With the number of objects assigned via short cycles further shown never to exceed

two per round, this implies that the proportion of objects assigned via short cycles vanishes

in probability, leading ultimately to the irrelevance claim stated above.

We view the Markov characterization of TTC as our second main contribution, of

independent value beyond the particular application explored in the current paper. It is

of interest since it can lead to a precise understanding of the outcome of TTC, in terms

of the distribution of ranks that agents enjoy and the ranks that objects enjoy. While the

former is known from the analysis of RSD due to its equivalence,3 the current analysis may

shed additional light on the agents’ welfare more directly based on the formula derived in

Theorem 1. More importantly, the distribution of ranks enjoyed by the objects (e.g., school)

3See Knuth (1996) for the rank distribution of agents under RSD and see Pathak and Sethuraman

(2011) for the equivalence which generalizes that of Knuth (1996) and Abdulkadiroglu and Sönmez (1998).
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has not been known before. We provide a characterization of the ranks that lead to the

irrelevance result mentioned above, as well as the asymptotic instability of TTC in the large

market studied in Che and Tercieux (2015). Also, the Markov characterization is highly

nontrivial. The difficulty stems from the fact that the preferences of agents and those of

objects remaining after the first round of TTC need not be uniform, with their distributions

affected nontrivially by the realized event of the first round of TTC, and the nature of the

conditioning is difficult to analyze.4 A remarkable implication of our chracterization is

that even though the exact composition of cycles are subject to the conditioning issue, the

number of agents/objects assigned in each round follows a Markov chain, and is thus free

from the conditioning issue.

The current paper is related to several strands of literature. First, the Markov character-

ization of TTC is related closely to a similar Markov characterization of the Shapley-Scarf

TTC derived in Frieze and Pittel (1995). The Shapley-Scarf TTC has agents endowed

with property rights over objects, exactly one object for each agent, and are allowed to

trade their rights along cycles in successive rounds. Despite the close resemblance, the two

mechanisms are distinct in terms of the distribution of agents that objects point to. The

associated (“pointing”) map from objects to agents is always bijective in the Shapley-Scarf

TTC since alternative agents own distinct objects but not bijective in our TTC. This dif-

ference leads to different probablistic structures in the associated composite map—agents

pointing to objects which in turn point to agents—in our random economy, and required

different arguments albeit following a similar approach. The concepts of random rooted

forests and random composite maps prove crucial in our analysis, which to our knowledge

have never been applied in economics. We believe they may constitute a useful tool box in

other economic applications.

Second, the irrelevance result is closely related to the equivalence across a class of

random allocations recognized by a number of authors (Knuth (1996), Abdulkadiroglu

4To see this, assume that the set of agents and objects have the same size n and that they are indexed

from 1, . . . , n. Observe first that in Round 1 of TTC, each pair of an individual and an object has probability

1/n2 to form a cycle of order 2. Since there are n2 such pairs, at Round 1, the expected number of cycles

of order 2 is 1. Now, to see where the conditioning issue comes from, consider the event that at Round 1 of

TTC, each object points to the individual with the same index while each individual with index k ≤ n− 1

points to the object with index k + 1. Finally assume that individual n points to object n. Given this

event, observe that at Round 1 a single cycle clears and it only involves the individual and the object with

index n. Thus, conditionally on this event, the expected number of cycles of order 2 in Round 2 is much

smaller than 1. Indeed, in Round 2, only individual n−1 can be part of a cycle of order 2 and the only way

for this to happen is for individual n− 1 to point to object n− 1. This occurs with probability 1/(n− 1)

and so the expected number of cycles of order 2 goes to 0 as n grows.
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and Sönmez (1998), Pathak and Sethuraman (2011), Carroll (2014), Bade (2016)). These

authors show that a class of random allocations, including TTC and RSD, implement

the identical (probabilistic) assignment of agents to objects. However, they are silent

on the joint disribution of agents’ preference ranks and their priorities under alternative

mechanisms. As illustrated, the joint distribution of allocation matters for the extent to

which agents’ priorities are respected and to which agents justifiably envy others. As we

will shortly illustrate, the alternative mechanisms are not equivalent in this regard for a

finite market. Nevertheless, the equivalence is restored as the market grows large. Our

result therefore can be seen as the strengthening of equivalence (to include priority rank

distribution), for the iid preferences case.

Third, the current paper is related to the literature studying the tradeoff between effi-

ciency and stability of mechanisms particularly in the school choice context. The tradeoff

was first recognized by Roth (1982), and was confirmed by Abdulkadiroglu and Sonmez

(2003) in the school choice context, by Abdulkadiroglu, Pathak, and Roth (2009) in the

context of indifferences. Che and Tercieux (2015) show that the tradeoff remains signifi-

cant even quantatively in a large market with sufficient correlation in agents’ preferences.

Abdulkadiroglu, Che, Pathak, Roth, and Tercieux (2017) show the sense in which TTC

minimizes justified envy/maximizes priority-respecting in the class of Pareto-efficient and

strategyproof mechanisms in one-to-one matching setting. Together with the irrelevance

result of the current paper, this result yields the sense in which the irrelevance is driven by

the Pareto efficiency and strategyproofness rather than the feature of TTC itself.

Finally, the current paper studies the large literature studying TTC (Shapley and Scarf

(1974), Ma (1995), Abdulkadiroglu and Sonmez (2003)). Leshno and Lo (2017) studies

TTC in a large market but with a very different asymptotics where the number of object

types is finite while there are a continuum of copies/seats for each object type has and

a continuum of agents with finite preference types. This distinction makes the analysis

largely unrelated.

The remainder of the paper is organized as follows. Section 2 illustrates the main

irrelevance result in an example. Section 3 introduces the formal model and preliminary

tools for analysis. Section 4 provide the Markov characterization. Section 5 presents the

irrelevance result and its implications. Section 6 discusses robustness and limitation of our

results. We argue that the irrelevance is robust to the introduction of correlation in agents’

preferences.
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2 Example

Suppose there are two agents, 1 and 2, and two objects, a and b, and the ordinal preference

ranking of each entity, an agent or an object, over the entities on the other side is iid

uniform. By the equivalence result of Carroll (2014), the agents’ assignment probabilities

are exactly the same under TTC and RSD for each profile of preferences. This does not

mean, however, equivalence from the perspective of the objects. In particular, one can see

that the preference ranks enjoyed by the objects differ between the two mechanisms.

To see this precisely, we compute the expected rank enjoyed by the object under RSD

and TTC. This is simple for RSD. Given the uniform iid assumption, an object has the

equal chance of matching with its first- and second-best agents in RSD. Hence, the expected

rank an object enjoys under RSD is:

RANKRSD = 1
2
· 1 + 1

2
· 2 = 3/2.

For TTC, there are two cases. With probability 1/2, the agents prefer different objects. In

this case, Pareto efficiency (satisfied by TTC) dictates that the agents obtain their preferred

objects. This means that from the objects’ perspectives, the assignment is completely

(uniform) random. With the remaining probability 1/2, the agents prefer the same object,

say a. In this case, a matches with its top choice agent, via a “short” cycle it forms

with that agent. Object b matches with the left-over agent, so its assignment is (uniform)

random. Since an object has probability 1/2 of being the commonly preferred item, with

probability 1/4 it matches with its top choice and with the remaining probability 3/4, it

matches randomly, or its top choice with probability 1/2. In sum, under TTC, an object

enjoys the expected rank:

RANKTTC = (1
4

+ 3
4
· 1

2
) · 1 + (1− 1

4
− 3

4
· 1

2
) · 2 = 11/8,

which is less than 3/2.

This difference in assignment gives rise to the difference in the likelihood of there being

justified envy. Under TTC, no justified envy arises here; whenever an agent is assigned

its less preferred object (the second case above), its preferred object matches with its top

choice. But under RSD, when both agents prefer the same object, that object does not

match its preferred agent. There is 1/4 chance of there being one agent who has justified

envy.

Ultimately, the difference between the two mechanisms is traced to the fact that TTC

uses agents’ priorities (or objects’ ranking of agents) to organize trades, in fact more pre-

cisely to their use in short cycles. The main observation we make below is that increasingly
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few objects as a proportion of the entire set of objects are assigned via short cycles as the

market grows large. And this implies that priorities become increasingly irrelevant as the

market grows large.

3 Model

We consider a market consisting of a set I of agents and a set O of objects. We do not

require |I| = |O|, so the market could be unbalanced. A matching is a map µ : I → O∪{ø}
such that i 6= i′ ⇒ µ(i) ∩ µ(i′) \ {ø} = ∅, where ø means not being matched.

In Section 5, we will consider a large market, and for that purpose, we will assume

|I| = |O| = n and consider the outcome as n → ∞. The preferences of each agent i is a

permutation Pi of O interpreted as her preference ranking over objects (in the descending

order), and the preference of each object o, or agents’ priorities for o is a permuation, de-

noted �o, of I again interpreted as its preference ranking over agents (in descendign order).

This assumes that all partners on the other side are acceptable. Let (P,�) := (Pi,�o)i∈I,o∈O
be a profile of preferences. Throughout, we shall consider a random market (I, O, P̃ , �̃)

in which the preference of each entity, agent or object, is drawn iid uniformly. Another

way to interpret our random economy is that we are taking average over all priorities and

preferences, say for the purpose of evaluating the relative incidence of justified envy under

alternative mechanisms. From this perspective, randomness is simply an analytical device

to compute the average performance of interest (e.g. incidence of justified envy).

Let ω be a (realized) state which consists of a profile (P,�) of preferences on both

sides and a (realized) random variable θ. A mechanism is a mapping from each state to a

matching. Given our random economy, randomness may arise from the random structure

generating preferences or the randomness in θ, as is the case with RSD. In RSD, a serial

order—a permutation of I—is chosen at random and, following that order, each agent

claims the most preferred remaining object and exits the market, starting with the agent

at the top of the serial order. The resulting matching defines the mechanism, where the

random serial order constitutes θ.

Our main interest is with TTC, which proceeds in multiple rounds as follows. In Round

t = 1, ..., each individual i ∈ I points to his most preferred object (if any). Each object

o ∈ O points to the individual who has the highest priority at that object. Since the

number of individuals and objects are finite, the directed graph thus obtained has at least

one cycle. Every individual who belongs to a cycle is assigned the object he is pointing at.

All assigned individuals and objects are then removed. The algorithm terminates when all
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individuals have been assigned; otherwise, it proceeds to Round t + 1. This mechanism

terminates in finite rounds. Indeed, there are finite individuals, and at least one individual

is removed at the end of each round. The TTC mechanism selects a matching via this

algorithm for all possible profiles of agents’ preferences and their priorities.

As noted, both RSD and TTC mechanisms are Pareto efficient; that is, for each

profile P of agents’ preferences, the matching produced by either mechanism cannot be

improved upon by a different matching that makes all agents weakly better off and some

strictly better off. Note that Pareto efficiency is defined only taking the agents’ welfare

into account. Both are strategyproof ; namely, each agent has a dominant strategy of

reporting her perference truthfully, in the sense that a shift to truth-telling from any report

of preference yields a first-order stochastically dominating shift of allocation in terms of

her preference ranking.

In fact, the two mechanisms are identical from the agents’ perspectives. The random

matchings two mechanisms induce for each profile P of agents’ preferences give rise to an

identical lottery for each agent (Carroll (2014)). As noted in Section 2, the equivalence

does not extend to the object side. To gain more precise comparison of the mechanisms in

this regard, we need to understand the probabilistic structure of allocation in TTC more

precisely.

4 Markov Chain Property of TTC

The main challenge in analyzing TTC is to deal with the conditioning issue: the prefer-

ences of the agents and objects remaining in any round t ≥ 2 depend nontrivially on the

exact history of the TTC process up to the previous round. The condition prevents us

from invoking the oft-used principle of deferred decision, whereby one views each agent as

drawing preferences of the remaining objects at random in each round, instead of having

drawn preferences for objects in the beginning.

To illustrate the conditioning issue, suppose there are three agents, 1,2 and 3, and three

objects, a, b, and c. Suppose agent 3 matches with object c in Round 1, and two agents, 1

and 2, and two objects, a and b remain in Round 2. Whether a given agent say 1 can point

to either object depends on what she pointed to in Round 1. If she had pointed to c, then

she can point to a or b at random, much in the way prescribed by the principle of deferred

decision. But if she had pointed to say b, then she cannot redraw her target of pointing;

she must continue to point to b. In particular, this means that a simple structure such as

that of Markov cannot exist at the individual level of agents/objects.
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Nonetheless, a Markov structure exists at a more aggregate level, with respect to the

total numbers of agents and objects that are assigned in each round of TTC.

Theorem 1. Suppose any round of TTC begins with n agents and o objects remaining in

the market. Then, the probability that there are m ≤ min{o, n} agents assigned at the end

of that round is

pn,o;m =

(
m

(on)m+1

)(
n!

(n−m)!

)(
o!

(o−m)!

)
(o+ n−m).

Thus, denoting ni and oi the number of individuals and objects remaining in the market at

any round i, the random sequence (ni, oi) is a Markov chain.

Proof. See Appendix A. �

This theorem means that the numbers of agents and objects that are assigned in each

round of TTC follow a simple Markov chain depending only on the numbers of agents and

objects at the beginning of that round. It also characterizes the probability structure of the

Markov chain. This implies that there are no conditioning issues at least with respect to

the total numbers of agents and objects that are assigned in each round of TTC. Namely,

one does not need to keep track of the precise history leading up to a particular economy

at the beginning of a round, as far as the numbers of objects assigned in that round is

concerned.

One can combine Theorem 1 with some existing result to yield fuller understanding of

TTC process. For instance, as shown in Appendix B, one can compute the expectation

and the variance of the number of agents matched at a given stage of TTC given the the

remaining number of individuals and objects at the beginning of that round.

Next, it is instructive to compare our result with Frieze and Pittel (1995)’s analyis of

Shapley-Scarf TTC. They obtain a similar Markov chain result for Shapley-Scarf TTC.

Our result allows us to compare the two Markov chains. Specifically, we can order the two

chains in terms of likelihood ratio order. To see this, let us recall the transition probabilities

of the Markov chain obtained by Frieze and Pittel (1995):

p̂n;m =
n!

nm(n−m)!

m

n

By Theorem 1, we obtain (assuming n = o):

pn;m : = pn,n;m =

(
m

(n)2(m+1)

)(
n!

(n−m)!

)2

(2n−m)

=

(
n!

nm(n−m)!

)2(
m(2n−m)

n2

)
.
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Let us compare the two distributions in terms of likelihood ratio order. Fix n ≥ 1 and

any m′ ≥ m. It is easy to check that

p̂n,m′

p̂n,m
=

nm(n−m)!

nm′(n−m′)!
m′

m

while
pn,m′

pn,m
=

(
nm(n−m)!

nm′(n−m′)!

)2
m′

m

2n−m′

2n−m
.

Now, observe that(
p̂n,m′

p̂n,m

)−1
pn,m′

pn,m
=

(
1

nm′−m

)(
(n−m)!

(n−m′)!

)
(2n−m′)
(2n−m)

=
(n−m)(n−m− 1)...(n−m′ + 1)

nm′−m
2n−m′

2n−m
≤ 1.

This proves that for any n, the distribution p̂n,· dominates pn,· in terms of likelihood ratio

order. One can prove an interesting implication of this result: for each t ≥ 1, the probability

that TTC stops before Round t is smaller than the probability that Shapley-Scarf TTC

stops before Round t. Put in another way, the random round at which TTC stops is (first

order) stochastically dominated by that at which the Shapley-Scarf TTC stops.

Interestingly, Frieze and Pittel (1995) show that, in the case of balanced market with

|I| = |O| = n the number of rounds required for Shapley-Scarf TTC to conclude is on

average in the order of
√
n, where n is the number of agents/objects (see Theorem 1 of

Frieze and Pittel (1995)).5 Our TTC on average takes longer to complete. Nevertheless,

we can show that our TTC terminates not much more slowly:

Proposition 1. Assume |I| = |O| = n. Let T denote the number of rounds required for

TTC to conclude. Then, T
n

p−→ 0.

Proof. See Appendix C. �

5 Irrelevance of Priorities in Large Markets

As highlighted before, the key observation for the irrelevance result is that any object o

assigned via a long cycle is assigned uniform-randomly across agents below the rank R∗o of

agent that o points to at the time it is assigned. The proof will be completed by establishing

5The expected number of the rounds is:
√

8
πn−

3
π log(n) +O(1).
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that all objects, except for a fraction vanishing in probability, are assigned via long cycles

and have the rank R∗o sublinear in n. With this goal in mind, we define two (random)

sets of objects. First, let Ô denote the set of objects that are assigned via long cycles (as

defined earlier). Second, let Õ denote the set of objects which point to agents these objects

rank sublinearly when they are assigned. Specifically, for a fixed ε > 0, let

Õ := {o ∈ O|R∗o ≤ log1+ε(n)},

where R∗o is the priority rank order of the individual that an object o points to when it is

assigned in TTC. Fix ε > 0 and let Ō := Ô ∩ Õ.

The significance of this set is that any object in this set is uniform-randomly assigned

across individuals whom the object ranks below R∗o (i.e., ranks larger than R∗o). This

in turn means that the rank enjoyed by each object o ∈ Ō is uniformly distributed across

{
⌈
log1+ε(n)

⌉
+1, ..., n} conditional on the rank Ro being higher than log1+ε(n). To precisely

characterize the implication of this observation for the joint distribution of ranks, we define

a few pieces of notation. First we let Ro (resp. Ri) denote the rank enjoyed by object

o (resp. enjoyed by individual i) under TTC. We also let an arbitrary vector (xk)k∈K be

denoted by xK . For instance, RO stands for {Ro}o∈O. We are now ready to present the

corner stone for our irrelevance result, the proof of which can be found in Appendix D.

Proposition 2. Fix any I ′ ⊆ I and O′′ ⊆ O. For any O′ ⊆ O′′, given Ō = O′′,

the distribution of the collection {RO′ ,RI′} is stochastically dominated by the collection

{{Yo}o∈O′ ,RI′} where {Yo}o∈O′ is a collection of iid random variables where each Yo follows

the uniform distribution over {
⌈
log1+ε(n)

⌉
+ 1, ..., n}. Formally, for any `O′ , `I′,

Pr
{
RO′ ≤ `O′ ,RI′ ≤ `I′ | Ō = O′′

}
≥
∏
o∈O′

Pr {Yo ≤ `o} × Pr
{
RI′ ≤ `I′ | Ō = O′′

}
.

In addition, for any O′ ⊆ O′′, given Ō = O′′, the distribution of the collection {RO′ ,RI′}
stochastically dominates the collection {{Xo}o∈O′ ,RI′} where {Xo}o∈O′ is a collection of iid

random variables where each Xo follows the uniform distribution over {1, ..., n}. Formally,

for any `O′ , `I′,

Pr
{
RO′ ≤ `O′ ,RI′ ≤ `I′ | Ō = O′′

}
≤
∏
o∈O′

Pr {Xo ≤ `o} × Pr
{
RI′ ≤ `I′ | Ō = O′′

}
.

Roughly speaking, the proposition asserts that the distribution of the rank enjoyed

by each object within Ō is “squeezed” (accoring to first-order stochastic dominance) in

between uniform from {
⌈
log1+ε(n)

⌉
+ 1, ..., n} from above and uniform from {1, ..., n} from
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below, independently of the distribution of the ranks enjoyed by the agents and the ranks

enjoyed by the other objects in the set Ō. Since log1+ε(n)/n → 0 as n → ∞, the joint

distribution converges to the iid uniform distribution as n→∞.

We next prove that this set Ō eventually comprises the entire proportion of the objects

as n→∞.

Proposition 3.
|Ō|
n

p−→ 1 as n→∞.

Proof. It suffices to prove that
|Ô|
n

p−→ 1 and
|Õ|
n

p−→ 1. We first prove former.

Corollary S1 of our Supplementary Appendix proves that at each round of TTC, irrespective

of the history, the expected number of objects matched via short cycles is smaller than 2.

Thus, denoting by ôt the number of objects involved in short cycles at Step t of TTC, we

must have E[ôt |T ] ≤ 2. Hence,

1

n
E[|Ô|] = 1− 1

n
E

[
T∑
t=1

ôt

]

= 1− 1

n
ET

[
E

[
T∑
t=1

ôt |

]]

≥ 1− 2ET
[
T

n

]
→ 1,

where the convergence result comes from Proposition 1. Since 1
n
E[|Ô|]→ 1 implies

|Ô|
n

p−→
1, we are done.

We next prove that
|Õ|
n

p−→ 1. To this end, we define a new mechanism TTC∗, which

operates exactly like TTC, except that, in each round, objects in each cycle are assigned

to the agents that the objects point to (rather than the other way around). Clearly, in

each round of TTC∗, the same cycles as those in the corresponding round of TTC are

formed, and the same associated set of agents and objects are assigned and removed. One

crucial difference, though, is that the assignment is Pareto efficient from the perspective of

objects. Proposition 1 of Che and Tercieux (2017), applied to the object side, then implies

the result. �

We are almost ready for the main theorem. In the sequel, if W is a random variable

defined on {1, ..., n} then we let W̄ be equal to 1
n
W . Denote by On := {o1, ..., on} and In :=

{i1, ..., in} respectively the set of objects and the set of individuals in an n-economy. Let

{Vo1 , ..., Von , Vi1 , ..., Vin} be a sequence of collections of 2n random variables, each random

variable taking values in [0, 1]. We need to define a notion of convergence for a vector whose

length increases as n→∞:
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Definition 1. A random vector {R̄o1 , ..., R̄on , R̄i1 , ..., R̄in} converges in distribution to

{Vo1 , ..., Von , Vi1 , ..., Vin} as n→∞ if for any integer K, any x ∈ [0, 1]K and any sequence

{yn} with values in [0, 1]n, we have

lim
n→∞

|F n(x, yn)−Gn(x, yn)| = 0

where F n is the cdf of {R̄o1 , ..., R̄oK , R̄i1 , ..., R̄in} while Gn is the cdf of {Vo1 , ..., VoK , Vi1 , ..., Vin}.

Recall that X̄o1 , ..., X̄on is a collection of iid random variables each being U{1, ..., n}/n.

Since RSD ignores priorities, Carroll (2014)’s equivalence result implies that the distribution

of ranks of objects and individuals under RSD is exactly {X̄o1 , ..., X̄on , R̄i1 , ..., R̄in}.

As we already mentioned,
|Ō|
n

p−→ 1. Hence, for any given integer K (which does

not depend on n), Pr
{
{o1, ..., oK} ⊆ Ō

}
converges to 1. In addition, from the above

proposition, we directly obtain that for any I ′ ⊆ I and for any O′ ⊆ O, for any `O′ , `I′ ,

Pr
{
RO′ ≤ `O′ ,RI′ ≤ `I′ | O′ ⊆ Ō

}
≥
∏
o∈O′

Pr {Yo ≤ `o} × Pr
{
RI′ ≤ `I′ | O′ ⊆ Ō

}
and, in addition,

Pr
{
RO′ ≤ `O′ ,RI′ ≤ `I′ | O′ ⊆ Ō

}
≤
∏
o∈O′

Pr {Xo ≤ `o} × Pr
{
RI′ ≤ `I′ | O′ ⊆ Ō

}
.

We are now ready to present our main result, suggesting the irrelevance of priorities in

TTC: the limit distribution of ranks enjoyed by the objects as n→∞ is uniform just like

RSD.

Theorem 2. {R̄o1 , ..., R̄on , R̄i1 , ..., R̄in} converges in distribution to {X̄o1 , ..., X̄on , R̄i1 , ..., R̄in}
as n→∞.

This result shows that the joint distribution of ranks under TTC converges in distribu-

tion to the joint distribution of ranks of RSD, showing that as the market grows, objects’

priorities become irrelevant.

The irrelevance results given in Theorem 2 and Proposition 2 have a number of impor-

tant corollaries. First, the empirical cumulative distribution function of ranks of objects

{R̄o1 , ..., R̄on} converges in probability to the cumulative distribution of the uniform dis-

tribution. This is fairly intuitive: Theorem 2 suggests that the collection of {R̄o1 , ..., R̄on}
converges in distribution to a collection of iid uniform random variables over [0, 1]. Hence,

using some version of the LLN yields the result.
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Corollary 1. Fix any x ∈ [0, 1]. We must have 1
n

∑
o∈O 1{R̄o ≤ x} p−→ x.

Proof. See Appendix E. �

Our result also has natural implications when comparing TTC and RSD in terms of

justified envy. Indeed, the next result shows that relative to the size of the market, the

incidences of justified envy under TTC and RSD become indistinguishable.

Corollary 2. Fix a pair (i, o). The difference between the probability that (i, o) blocks

TTC and the probability that (i, o) blocks RSD goes to 0. Hence, the difference in expected

fraction of blocking pairs under TTC and RSD converges to 0.6

Proof. See Appendix F. �

6 Discussion

TTC achieves Pareto efficient assignment of agents to objects, through the trading of their

priorities at objects. A recent paper by Abdulkadiroglu, Che, Pathak, Roth, and Tercieux

(2017) develops the sense in which this use of priorities in TTC minimizes justified envy:

in the one-to-one matching, no efficient and strategyproof mechanism can further reduce

justified envy over TTC. While this does not mean that for any given priorities TTC

entails strictly less justified envy than other efficient mechanism, such as Serial Dictatorship,

Abdulkadiroglu, Che, Pathak, Roth, and Tercieux (2017) further prove that TTC does

admit fewer justified envy than RSD on average when the average is taken over all possible

priorities, or equivalently when priorities are drawn at random.

Strikingly, however, the current paper suggests that the envy-minimizing benefit of TTC

vanishes in a large market; simply put, the priorities in TTC have virtually no effect on the

outcome, compared with RSD, in a sufficiently large market. We must caution, however,

that this result need not be the consequence of the specific feature of TTC. Rather, the envy-

minimality of TTC suggests that, at least in the environment we considered, the vanishing

role of priorities is likely to be the consequence of Pareto efficiency and strategyproofness;

namely, these two requirements prove too strong for priorities to have any residual effect

on the outcome. Moreover, the irrelevance of priorities rests on the canonical one-to-one

matching environment. As we argue below, in the many-to-one matching environment, the

irrelevance result extends under certain asymptotics but not under others. In this sense,

6The fraction of blocking pair corresponds to the total number of blocking pairs divided by the total

number of possible pairs |I| × |O|.
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one must not view our contribution as establishing general irrelevance of priorities under

TTC but as clarifying more precisely than before about the types of large economies in

which TTC’s use of priorities matters.

We now discuss the robustness of our result.

6.1 Correlated preferences:

If agents’ preferences are perfectly correlated, the TTC leaves no justified envy, as it imple-

ments the unique matching that is both Pareto efficient and (perfectly) stable. By contrast,

RSD will entail a significant amount of justified envy even in the limit. But this case is

extreme. A more interesting case is when the preferences are not perfectly correlated. Sup-

pose for instance that agents’ preferences are represented by a cardinal utility function,

ui(o) = uo + ξio, where uo is a common utility from object o common for all agents and

ξio is a idiosyncratic utility from o drawn iid for each agent i. In particular, the support

of common utility is finite and sufficiently far apart from each other that the objects are

effectively “tiered”: all agents prefer top tier objects (with the highest value of uo), and

they all prefer the second tier objects next, and so on. In this case, the TTC are effectively

partitioned into multiple stages: in stage 1, all agents point to objects in tier 1, and once

all tier 1 objects are assigned, stage 2 begins in which the remaing agents point to tier 2

objects, and they are assigned, etc. Since agents’ priorities at each object is iid, each stage

can be separated as a distinct TTC market, for which our asymptotic irrelevance result

would apply. Hence, in this environment, the irrelevance result extends.

6.2 Many-to-one matching:

Our model has considered an one-to-one matching. While one-to-one matching serves as

a good baseline model, many real-world situations involve many-to-one matchings. School

choice or housing allocation typically involves multiple seats or mulitiple identical units

available for assignment. We believe that our result of asymptotic irrelevance extends

to many-to-one matching setting as long as the number of copies per object type grows

suffficiently slowly compared with the number of object types. Such asymptotics, which one

may call a “small school” model, has been adopted by a number of authors, such as Kojima

and Pathak (2009), Ashlagi, Kanoria, and Leshno (2017), Che and Tercieux (2017) and

Che and Tercieux (2015), fits well settings such as medical matching (where about 20,000

doctors apply to about 3,000-4,000 hospitals), and NYC public high school matching in

which the number of programs (about 800) exceeds the number of students admitted by

16



each program (about 100).

At the same time, the irrelevance result does not extend to the other commonly used

asymptotics, in which the number of copies per object type grows sufficiently fast compared

with the number of object types. Such asymptotics, which one may call a “large school”

model, has been adopted by many authors such as Abdulkadiroglu, Che, and Yasuda

(2015), Azevedo and Leshno (2016), Che, Kim, and Kojima (2013) and Leshno and Lo

(2017), and fits well with the school choice in many US cities in which a handful of schools

admit each hundreds of students. To see that our irrelevance result does not extend to this

environment, suppose that the number of object types is fixed at some finite number, as

the number of students and the copies of each object type grows large. In that case, the

proportion of agents that are assigned via short cycles under TTC does not vanish even in

probability. Since the agents assigned via short cycles under TTC tend to have exhibit less

justified envy than under RSD, the amount of justified envy is smaller under TTC than

under RSD (see Abdulkadiroglu, Che, Pathak, Roth, and Tercieux (2017)).7
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A Proof of Theorem 1

Given the nature of conditioning mentioned earlier, it is crucial for our purpose to keep

track of the agents and objects that can draw their partners at random and those who

cannot in each round of TTC. This requires us to investigate the probabilistic structure

known as random rooted forests.

To begin, consider any two finite sets I and O, with cardinalities |I| = n, |O| = o. A

bipartite digragh G = (I × O,E) consists of vertices I and O on two separate sides

and directed edges E ⊂ (I × O) ∪ (O × I), comprising ordered pairs of the form (i, o) or

(o, i) (corresponding to edge originating from i and pointing to o and an edge from o to

i, respectively). A rooted tree is a bipartite digraph where all vertices have out-degree

1 except the root which has out-degree 0.8 A rooted forest is a bipartite graph which

consists of a collection of disjoint rooted trees. A spanning rooted forest over I ∪O is

a forest comprising vertices I ∪ O. From now on, a spanning forest will be understood as

being over I ∪O.

8Sometimes, a tree is defined as an acyclic undirected connected graph. In such a case, a tree is rooted

when we name one of its vertex a “root.” Starting from such a rooted tree, if all edges now have a direction

leading toward the root, then the out-degree of any vertex (except the root) is 1. So the two definitions

are actually equivalent.

19



We begin by noting that TTC induces a random sequence of spanning rooted forests.

Indeed, one could see the beginning of the first round of TTC as a situation where we have

the trivial forest consisting of |I|+ |O| trees with isolated vertices. In the above examples,

there are 6 separate trees: {1}, {2}, {3}, {a}, {b}, {c}. Within this step, each vertex in I

will randomly point to a vertex in O and each vertex in O will randomly point to a vertex

in I. Say in the above example that agents 1 and 3 point to c, and agent 2 points to a, and

all objects point to 3. Note that once we delete the realized cycles (3− c in the example),

we again get a spanning rooted forest. So we can think again of the beginning of the second

round of TTC as a situation where we start with a spanning rooted forest where the agents

and objects remaining from the first round form this spanning rooted forest, where the

roots consist of those agents and objects that had pointed to the entities that were cleared

via cycles. In the above example, the spanning rooted forest in the begining of Round 2

has three rooted trees: {1}, {2→ b}, {a}. Here again objects that are roots randomly point

to a remaining individual and individuals that are roots randomly point to a remaining

object. Once cycles are cleared we again obtain a forest and the process goes on like this.

A.1 Markov Properties of Spanning Rooted Forests

Formally, the random sequence of forests, F1, F2, ...., is defined as follows. First, we let F1

be a trivial unique forest consisting of |I| + |O| trees with isolated vertices, forming their

own roots. For any i = 2, ..., we first create a random directed edge from each root of Fi−1

to a vertex on the other side, and then delete the resulting cycles (these are the agents and

objects assigned in round i− 1) and Fi is defined to be the resulting rooted forest.

For any rooted forest Fi, let Ni = Ii ∪ Oi be its vertex set and ki = (kIi , k
O
i ) be the

vector denoting the numbers of roots on both sides, and use (Ni, ki) to summarize this

information. And let FNi,ki denote the set of all rooted forests having Ni as the vertex set

and ki as the vector of its root numbers.

Lemma 1. Given (Nj, kj), j = 1, ..., i, every (rooted) forest of FNi,ki is equally likely.

Proof. We prove this result by induction on i. Since for i = 1, by construction, the

trivial forest is the unique forest which can occur, this is trivially true for i = 1. Fix i ≥ 2,

and assume our statement is true for i− 1.

Fix Ni = Ii ∪Oi ⊂ Ni+1 = Ii+1 ∪Oi+1, and ki and ki+1. For each forest F ∈ FNi+1,ki+1
,

we consider a possible pair (F ′, φ) that could have given rise to F , where F ′ ∈ FNi,ki and φ

maps the roots of F ′ in Ii to its vertices in Oi as well as the roots of F ′ in Oi to its vertices

in Ii. In words, such a pair (F ′, φ) corresponds to a set Ni of agents and objects remaining
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at the beginning of round i of TTC, of which kIi agents of Ii and kOi objects have lost their

favorite parties (and thus they must repoint to new partners in Ni under TTC in round i),

and the way in which they repoint to the new partners under TTC in round i causes a new

forest F to emerge at the beginning of round i + 1 of TTC. There are typically multiple

such pairs that could give rise to F .

We start by showing that each forest F ∈ FNi+1,ki+1
arises from the same number of

such pairs—i.e., that the number of pairs (F ′, φ), F ′ ∈ FNi,ki , causing F to arise does not

depend on the particular F ∈ FNi+1,ki+1
. To this end, for any given F ∈ FNi+1,ki+1

, we

construct all such pairs by choosing a quadruplet (a, b, c, d) of four non-negative integers

with a+ c = kIi and b+ d = kOi ,

(i) choosing c old roots from Ii+1, and similarly, d old roots from Oi+1,

(ii) choosing a old roots from Ii\Ii+1 and similarly, b old roots from Oi\Oi+1,

(iii) choosing a partition into cycles of Ni\Ni+1, each cycle of which contains at least one

old root from (ii),9

(iv) choosing a mapping of the kIi+1 + kOi+1 new roots to Ni\Ni+1.10

Clearly, the number of pairs (F ′, φ), F ′ ∈ FNi,ki , satisfying the above restrictions de-

pends only on |Ii|, |Oi|, ki, ki+1, and |Ni+1| − |Ni|.11 We denote the number of such pairs

by β(|Ii|, |Oi|, ki; |Ni+1| − |Ni|, ki+1). Let φi = (φIi , φ
O
i ) where φIi is the random mapping

from the roots of Fi in Ii to Oi and φOi is the random mapping from the roots of Fi in Oi

to Ii. Let φ = (φI , φO) be a generic mapping of that sort. Since, conditional on Fi = F ′,

the mappings φIi and φOi are uniform, we get

Pr(Fi+1 = F |Fi = F ′) =
1

|Oi|k
I
i

1

|Ii|k
O
i

∑
φ

Pr(Fi+1 = F |Fi = F ′, φi = φ). (1)

9Within round i of TTC, one cannot have a cycle creating only with nodes that are not roots in the

forest obtained at the beginning of round i. This is due to the simple fact that a forest is an acyclic graph.

Thus, each cycle creating must contain at least one old root. Given that, by definition, these roots are

eliminated from the set of available nodes in round i+ 1, these old roots that each cycle must contain must

be from (ii).
10Since, by definition, any root in F ∈ FNi+1,ki+1 does not point, this means that, in the previous round,

this node was pointing to another node which was eliminated at the end of that round.
11Recall that by definition of TTC, whenever a cycle creates, the same number of individuals and objects

must be eliminated in this cycle. Hence, |Oi+1| − |Oi| = |Ii+1| − |Ii| and |Ni+1| − |Ni| = 2|Ii+1| − |Ii|.
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Therefore, we obtain

Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki))

=
∑

F ′∈FNi,ki

Pr(Fi+1 = F, Fi = F ′|(N1, k1), ..., (Ni, ki))

=
∑

F ′∈FNi,ki

Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki), Fi = F ′) Pr(Fi = F ′|(N1, k1), ...., (Ni, ki))

=
1

|FNi,ki |
∑

F ′∈FNi,ki

Pr(Fi+1 = F |Fi = F ′)

=
1

|FNi,ki |
∑

F ′∈FNi,ki

1

|Oi|k
I
i

1

|Ii|k
O
i

∑
φ

Pr(Fi+1 = F |Fi = F ′, φi = φ)

=
1

|FNi,ki |
1

|Oi|k
I
i

1

|Ii|k
O
i

∑
F ′∈FNi,ki

∑
φ

Pr(Fi+1 = F |Fi = F ′, φi = φ)

=
1

|FNi,ki |
1

|Oi|k
I
i

1

|Ii|k
O
i

β(|Ii|, |Oi|, ki; |Ni+1| − |Ni|, ki+1), (2)

where the third equality follows from the induction hypothesis and the Markov property of

{Fj}, the fourth follows from (1), and the last follows from the definition of β and from the

fact that the conditional probability in the sum of the penultimate line is 1 or 0, depending

upon whether the forest F arises from the pair (F
′
, φ) or not. Note that this probability is

independent of F ∈ FNi+1,ki+1
. Hence,

Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki), (Ni+1, ki+1))

=
Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki))

Pr(Fi+1 ∈ FNi+1,ki+1
|(N1, k1), ..., (Ni, ki))

=
Pr(Fi+1 = F |(N1, k1), ..., (Ni, ki))∑

F̃∈FNi+1,ki+1
Pr(Fi+1 = F̃ |(N1, k1), ..., (Ni, ki))

=
1

|FNi+1,ki+1
|
, (3)

which proves that, given (Nj, kj), j = 1, ..., i, every rooted forest of FNi,ki is equally likely.

�

The next lemma then follows easily.

Lemma 2. Random sequence (Ni, ki) forms a Markov chain.
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Proof. By (2) we must have

Pr((Ni+1, ki+1)|(N1, k1), ...., (Ni, ki)) =
∑

F∈FNi+1,ki+1

Pr(Fi+1 = F |(N1, k1), ...., (Ni, ki))

=
∑

F∈FNi+1,ki+1

1

|FNi,ki |
1

|Oi|k
I
i

1

|Ii|k
O
i

β(|Ii|, |Oi|, ki; |Ni+1| − |Ni|, ki+1).

Observing that the conditional probability depends only on (Ni+1, ki+1) and (Ni, ki), the

Markov chain property is established. �

The proof of Lemma 2 reveals in fact that the conditional probability of (Ni+1, ki+1)

depends on Ni) only through its cardinalities (|Ii|, |Oi|), leading to the following conclusion.

Let ni := |Ii| and oi := |Oi|.

Corollary 3. Random sequence {(ni, oi, kIi , kOi )} forms a Markov chain.

Proof. By symmetry, given (n1, o1, k
I
1, k

O
1 ), ..., (ni, oi, k

I
i , k

O
i ), the set (Ii, Oi) is chosen

uniformly at random among all the
(
n
ni

)(
o
oi

)
possible sets. Hence,

Pr((ni+1, oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (ni, oi, k

I
i , k

O
i ))

=
∑

(Ii,Oi):|Ii|=ni,|Oi|=oi

Pr{(ni+1, oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (ni, oi, k

I
i , k

O
i ), (Ii, Oi)}

× Pr
{

(Ii, Oi) | (n1, o1, k
I
1, k

O
1 ), ..., (ni, oi, k

I
i , k

O
i )
}

=

 ∑
(Ii,Oi):|Ii|=ni,|Oi|=oi

Pr{(ni+1, oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (Ii, Oi, k

I
i , k

O
i )}

 1(
n
ni

)(
o
oi

)
=

 ∑
(Ii,Oi):|Ii|=ni,|Oi|=oi

(Ii+1,Oi+1):|Ii+1|=ni+1,|Oi+1|=oi+1

Pr{(Ii+1, Oi+1, k
I
i+1, k

O
i+1)|(n1, o1, k

I
1, k

O
1 ), ...., (Ii, Oi, k

I
i , k

O
i )}


× 1(

n
ni

)(
o
oi

)
=

1(
n
ni

)(
o
oi

) ∑
(Ii,Oi):|Ii|=ni,|Oi|=oi

(Ii+1,Oi+1):|Ii+1|=ni+1,|Oi+1|=oi+1

Pr{(Ii+1, Oi+1, k
I
i+1, k

O
i+1)|(Ii, Oi, k

I
i , k

O
i )},

where the second equality follows from the above reasoning and the last equality follows

from the Markov property of {(Ii, Oi, k
I
i , k

O
i )}. The proof is complete by the fact that the

last line, as shown in the proof of Lemma 2, depends only on (ni+1, oi+1, k
I
i+1, k

O
i+1), (ni, oi, k

I
i , k

O
i )).

�

Theorem 1 makes use of a few additional results.
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A.2 Useful Computational Lemmas

The first lemma characterizes the number of spanning rooted forests.

Lemma 3 (Jin and Liu (2004)). Let V1 ⊂ I and V2 ⊂ O where |V1| = ` and |V2| = k. The

number of spanning rooted forests having k roots in V1 and ` roots in V2 is f(n, o, k, `) :=

on−k−1no−`−1(`n+ ko− k`).

For the next result, consider agents I ′ and objects O′ such that |I ′| = |O′| = m > 0.

We say a mapping f = h ◦ g is a bipartite bijection, if g : I ′ → O′ and h : O′ → I ′ are

both bijections. A cycle of a bipartite bijection is a cycle of the induced digraph. Note

that a bipartite bijection consists of disjoint cycles. A random bipartite bijection is a

(uniform) random selection of a bipartite bijection from the set of all bipartite bijections.

The following result will prove useful for a later analysis.

Lemma 4. Fix sets I ′ and O′ with |I ′| = |O′| = m > 0, and a subset K ⊂ I ′∪O′, containing

a ≥ 0 vertices in I ′ and b ≥ 0 vertices in O′. The probability that each cycle in a random

bipartite bijection contains at least one vertex from K is

a+ b

m
− ab

m2
.

Proof. We begin with a few definitions. A permutation of X is a bijection f : X →
X. A cycle of a permutation is a cycle of the digraph induced by the permutation. A per-

mutation consists of disjoint cycles. A random permutation chooses uniform randomly

a permutation f from the set of all possible permutations. Our proof will invoke following

result:

Fact 1 (Lovasz (1979) Exercise 3.6). The probability that each cycle of a random permu-

tation of a finite set X contains at least one element of a set Y ⊂ X is |Y |/|X|.

To begin, observe first that a bipartite bijection h ◦ g induces a permutation of set I ′.

Thus, a random bipartite bijection defined over I ′×O′ induces a random permutation of I ′.

To compute the probability that each cycle of a random bipartite bijection h◦g contains at

least one vertex in K ⊂ I ′×O′, we shall apply Fact 1 to this induced random permutation

of I ′.

Indeed, each cycle of a random bipartite bijection contains at least one vertex in K ⊂
I ′ × O′ if and only if each cycle of the induced random permutation of I ′ contains either

a vertex in K ∩ I ′ or a vertex in I ′ \ K that points to a vertex in K ∩ O′ in the original
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random bipartite bijection. Hence, the relevant set Y ⊂ I ′ for the purpose of applying Fact

1 is a random set that contains |K ∩ I ′| = a vertices of the former kind and Z vertices of

the latter kind.

The number Z is random and takes a value z, max{b−a, 0} ≤ z ≤ min{m−a, b}, with

probability:

Pr{Z = z} =

(
m−a
z

)(
a
b−z

)(
m
b

) .

This formula is explained as follows. Pr{Z = z} is the ratio of the number of bipartite

bijections having exactly z vertices in I ′ \K pointing toward K ∩ O′ to the total number

of bipartite bijections.

Note that since we consider bipartite bijections, the number of vertices in I ′ pointing

to the vertices in K ∩ O′ must be equal to b. Focusing first on the numerator, we have

to compute the number of bipartite bijections having exactly z vertices in I ′ \K pointing

toward K ∩ O′ and the remaining b− z vertices pointing to the remaining K ∩ O′. There

are
(
m−a
z

)(
a
b−z

)
ways one can choose z vertices from I ′ \K and b− z vertices from K ∩ I ′.

Thus, the total number of bipartite bijections having exactly z vertices in I ′ \K that point

to K ∩ O′ is
(
m−a
z

)(
a
b−z

)
υ, where υ is the total number of bipartite bijections in which the

b vertices thus chosen point to the vertices in K ∩O′. This gives us the numerator. As for

the denominator, the total number of bipartite bijections having b vertices in I ′ pointing

to K ∩ O′ is
(
m
b

)
(the number of ways b vertices are chosen from I ′), multiplied by υ (the

number of bijections in which the b vertices thus chosen point to the vertices in K ∩ O′).
Hence, the denominator is

(
m
b

)
υ. Thus, we get the above formula.

Recall our goal is to compute the probability that each cycle of the random permutation

induced by the random bipartite bijection contains at least one vertex in the random set

Y , with |Y | = a + Z, where Pr{Z = z} =
(m−a

z )( a
b−z)

(m
b )

. Applying Fact 1, then the desired
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probability is

E
[
|Y |
|I ′|

]
=

min{m−a,b}∑
z=max{b−a,0}

Pr{Z = z}a+ z

m

=
a

m
+

min{m−a,b}∑
z=max{b−a,0}

Pr{Z = z} z
m

=
a

m
+

min{m−a,b}∑
z=max{b−a,0}

(
m−a
z

)(
a
b−z

)(
m
b

) ( z
m

)

=
a

m
+

(
m− a
m
(
m
b

) ) min{m−a,b}∑
z=max{b−a,1}

(
a

b− z

)(
m− a− 1

z − 1

)

=
a

m
+

(
m− a
m
(
m
b

) )(m− 1

b− 1

)
=
a

m
+
b(m− a)

m2

=
a+ b

m
− ab

m2
,

where the fifth equality follows from Vandermonde’s identity. �

A.3 Proof of Theorem 1

Given Lemmas 1, 2 and Corollary 3, the proof of Theorem 1 is complete with the following

lemma:

Lemma 5. The random sequence (ni, oi) is a Markov chain, with transition probability given

by

pn,o;m := Pr{ni − ni+1 = oi − oi+1 = m|ni = n, oi = o}

=

(
m

(on)m+1

)(
n!

(n−m)!

)(
o!

(o−m)!

)
(o+ n−m).

Proof. We first compute the probability of transition from (ni, oi, k
I
i , k

O
i ) such that

kIi + kOi = κ to (ni+1, oi+1, k
I
i+1, k

O
i+1) such that kIi+1 = λI and kOi+1 = λO:

P(n, o, κ;m,λI , λO)

:= Pr
{
ni − ni+1 = oi − oi+1 = m, kIi+1 = λI , kOi+1 = λO | ni = n, oi = o, kIi + kOi = κ

}
.
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This will be computed as a fraction Θ
Υ
. The denominator Υ counts the number of rooted

forests in the bipartite digraph with kIi roots in Ii and kOi roots in Oi where kIi + kOi = κ,

multiplied by the ways in which kIi roots of Ii could point to Oi and kOi roots of Oi could

point to Ii.
12 Hence, letting f(n, o, kI , kO) denote the number of rooted forests in a bipartite

digraph (with n and o vertices on both sides) containing kI and kO roots on both sides.

Υ =
∑

(kI ,kO):kI+kO=κ

ok
I

nk
O

f(n, o, kI , kO)

=
∑

kI+kO=κ

ok
I

nk
O

(
n

kI

)(
o

kO

)
on−k

I−1no−k
O−1(nkO + okI − kIkO)

=
∑

kI+kO=κ

(
n

kI

)(
o

kO

)
on−1no−1(nkO + okI − kIkO)

=onno
(

2

(
n+ o− 1

κ− 1

)
−
(
n+ o− 2

κ− 2

))
.

The first equality follows from the fact that there are ok
I
nk

O
ways in which kI roots in Ii

point to Oi and kO roots in Oi could point to Ii. The second equality follows from Lemma

3. The last uses Vandermonde’s identity.

The numerator Θ counts the number of ways in which m agents are chosen from Ii and

m objects are chosen from Oi to form a bipartite bijection each cycle of which contains

at least one of κ old roots, and for each such choice, the number of ways in which the

remaining vertices form a spanning rooted forest and the λI roots in Ii+1 point to objects

in Oi \ Oi+1 and λO roots in Oi+1 point to agents in Oi \ Oi+1. To compute this, we first

compute

α(n, o, κ;m,λI , λO) =
∑

(kI ,kO):kI+kO=κ

β(n, o, kI , kO;m,λI , λO),

where β is defined in the proof of Lemma 1. In words, α counts, for any F with n−m agents

and o − m objects and roots λI and λO on both sides, the total number of pairs (F ′, φ)

that could have given rise to F , where F ′ has n agents and o objects with κ roots and φ

maps the roots to the remaining vertices. Following the construction in the beginning of

12Given that we have ni = n individuals, oi = o objects and kIi + kOi = κ roots at the beginning of

step i under TTC, one may think of this as the total number of possible bipartite digraph one may obtain

via TTC at the end of step i when we let kIi roots in Ii point to their remaining most favorite object and

kOi roots in Oi point to their remaining most favorite individual.
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the proof of Lemma 1, the number of such pairs is computed as

α(n, o, κ;m,λI , λO)

:=
∑

a+b+c+d=κ

(
n−m
c

)(
o−m
d

)(
m

a

)(
m

b

)(
a+ b

m
− ab

m2

)
(m!)2mλI+λO

=(m!)2mλI+λO ×

( ∑
a+b+c+d=κ

(
n−m
c

)(
o−m
d

)(
m− 1

a− 1

)(
m

b

)

+
∑

a+b+c+d=κ

(
n−m
c

)(
o−m
d

)(
m

a

)(
m− 1

b− 1

)
−

∑
a+b+c+d=κ

(
n−m
c

)(
o−m
d

)(
m− 1

a− 1

)(
m− 1

b− 1

))

=(m!)2mλI+λO
(

2

(
n+ o− 1

κ− 1

)
−
(
n+ o− 2

κ− 2

))
.

The first equality follows from Lemma 4, along with the fact that there are (m!)2 possible

bipartite bijections between n −m agents and o −m objects, and the fact that there are

mλImλO ways in which new roots λI agents and λO objects) could have pointed to 2m

cyclic vertices (m on the individuals’ side and m on the objects’ side), and the last equality

follows from Vandermonde’s identity.

The numerator Θ is now computed as:

Θ =

(
n

m

)(
o

m

)
f(n−m, o−m,λI , λO)α(n, o, κ;m,λI , λO)

=

(
n

m

)(
o

m

)
f(n−m, o−m,λI , λO)(m!)2mλI+λO

(
2

(
n+ o− 1

κ− 1

)
−
(
n+ o− 2

κ− 2

))
.

=

(
n!

(n−m)!

)(
o!

(o−m)!

)
mλI+λOf(n−m, o−m,λI , λO)

(
2

(
n+ o− 1

κ− 1

)
−
(
n+ o− 2

κ− 2

))
.

Collecting terms, let us compute

P(n, o, κ;m,λI , λO) =
1

onno

(
n!

(n−m)!

)(
o!

(o−m)!

)
mλI+λOf(n−m, o−m,λI , λO).

A key observation is that this expression does not depend on κ, which implies that (ni, oi)

forms a Markov chain.

Its transition probability can be derived by summing the expression over all possible

(λI , λO)’s:

pn,o;m :=
∑

0≤λI≤n−m,0≤λO≤o−m

P (n, o, κ;m,λI , λO).

28



To this end, we obtain:∑
0≤λI≤n−m

∑
0≤λO≤o−m

mλImλOf(n−m, o−m,λI , λO)

=
∑

0≤λI≤n−m

∑
0≤λO≤o−m

mλImλO
(
n−m
λI

)(
o−m
λO

)
×

(o−m)n−m−λ
I−1(n−m)o−m−λ

O−1((n−m)λO + (o−m)λI − λIλO)

=m

 ∑
0≤λI≤n−m

(
n−m
λI

)
mλI (o−m)n−m−λ

I

 ∑
1≤λO≤o−m

(
o−m− 1

λO − 1

)
mλO−1(n−m)o−m−λ

O


+m

 ∑
1≤λI≤n−m

(
n−m− 1

λI − 1

)
mλI−1(o−m)n−m−λ

I

 ∑
0≤λO≤o−m

(
o−m
λO

)
mλO(n−m)o−m−λ

O


−m2

 ∑
1≤λI≤n−m

(
n−m− 1

λI − 1

)
mλI−1(o−m)n−m−λ

I

 ∑
1≤λO≤o−m

(
o−m− 1

λO − 1

)
mλO−1(n−m)o−m−λ

O


=mon−mno−m−1 +mon−m−1no−m −m2on−m−1no−m−1

=mon−m−1no−m−1(n+ o−m),

where the first equality follows from Lemma 3, and the third follows from the Binomial

Theorem.

Multiplying the term 1
onno

(
n!

(n−m)!

)(
o!

(o−m)!

)
, we get the formula stated in the Lemma.

�

B Number of agents matched at each stage of TTC

Consider an arbitrary mapping, g : I → O and h : O → I, defined over our finite sets I and

O. Note that such a mapping naturally induces a bipartite digraph with vertices I ∪O and

directed edges with the number of outgoing edges equal to the number of vertices, one for

each vertex. In this digraph, i ∈ I points to g(i) ∈ O while o ∈ O points to h(o) ∈ I. Such

a mapping will be called a bipartite mapping. A cycle of a bipartite mapping is a cycle in

the induced bipartite digraph, namely, distinct vertices (i1, o1, ...., ik−1, ok−1, ik) such that

g(ij) = oj, h(oj) = ij+1, j = 1, ..., k − 1, ik = i1. A random bipartite mapping selects

a composite map h ◦ g uniformly from a set H × G = IO × OI of all bipartite mappings.

Note that a random bipartite mapping induces a random bipartite digraph consisting of

vertices I ∪ O and directed edges emanating from vertices, one for each vertex. We say
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that a vertex in a digraph is cyclic if it is in a cycle of the digraph.

The following lemma states the number of cyclic vertices in a random bipartite digraph

induced by a random bipartite mapping.

Lemma 6 (Jaworski (1985), Corollary 3). The number q of the cyclic vertices in a random

bipartite digraph induced by a random bipartite mapping g : I → O and h : O → I has an

expected value of

E[q] := 2

min{o,n}∑
i=1

(o)i(n)i
oini

,

and a variance of

8

min{o,n}∑
i=1

(o)i(n)i
oini

i− E[q]− E2[q],

where (x)j := x(x− 1) · · · (x− j − 1).

It is clear that at the beginning of the first round of TTC, if there are n agents and o

objects in the economy, the distribution of the number of individuals and objects assigned

is the same as that of q. Appealing to Theorem 1 we can further obtain that for any round

of TTC which begins with n agents and o objects remaining in the market, the number of

individuals and objects assigned has the same distribution as q. Hence, the first and second

moments of the number of individuals/objects matched at that round corresponds exactly

to those in the above lemma. Jaworski (1985) also shows that asymptotically (as o and n

grow) the expectation of q is
√

2π no
n+o

(1 + o(1)) while its variance is (4− π) 2no
n+o

(1 + o(1)).

Given the number n of individuals and o of objects available at the beginning of Stage t

of TTC, if we denote Xt the number of agents and objects matched at that stage, we have

that E[ Xt√
2π no

n+o

] converges to 1 as n grows while the variance of Xt√
2π no

n+o

converges to the

constant 4−π
π

.

C Proof of Proposition 1

We establish several lemmas before proving the lemma. Let {nt} be the (random) sequence

corresponding to the number of individuals at Step t of TTC. By our main result, this is a

markov chain. Let ct be the number of cyclic vertices on the individual side obtained in the

graph of TTC at Step t so that nt+1 = nt− ct for each t ≥ 1. In general, nt = n−
∑t−1

k=1 ck.

Thus, E[nt] = n−
∑t−1

k=1 E[ck].
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The following claim shows that if we start from any Step t0 of TTC where nt0 ≥ δn,

then with a significant probability, after a number of steps linear in
√
n we will end up with

an arbitrarily small fraction of agents remaining in the market.

Lemma 7. Consider any Step t0 ≥ 1 of TTC. Fix any δ > 0 and let c := 1√
πδ

. There is

γ > 0 such that lim Pr{nt0+c
√
n ≤ δn |nt0 ≥ δn} > γ where γ does not depend on t0.13

Proof. In the sequel, we condition w.r.t. the event that nt0 ≥ δn. By the markov

chain property, we can do as if this we were starting the process at nt0 (and so we ignore

this conditioning in the notations). Proceed by contradiction and assume that there is

δ > 0 such that lim Pr{nt0+c
√
n > δn} = 1. Note that the event {nt0+c

√
n > δn} implies

that nt > δn for any t0 ≤ t ≤ t0 + c
√
n. Thus, for each t0 ≤ t ≤ t0 + c

√
n, the probability

of {nt > δn} goes to 1 as n goes to infinity. In addition, for each t0 ≤ t ≤ t0 + c
√
n,

Pr{nt > δn} ≥ Pr{nt0+c
√
n > δn} → 1 and so, since the lower bound on Pr{nt > δn} does

not depend on t, Pr{nt > δn} goes to 1 uniformly across t0 ≤ t ≤ t0 + c
√
n. Now, by

definition,

E[ct] = E[ct |nt > δn ] Pr{nt > δn}+ E[ct |nt ≤ δn ] Pr{nt ≤ δn}

and so
E[ct]

E[ct |nt > δn ]
= Pr{nt > δn}+

E[ct |nt ≤ δn ]

E[ct |nt > δn ]
Pr{nt ≤ δn}.

Thus, using the fact that Pr{nt > δn} converges to 1 uniformly across any t0 ≤ t ≤ t0+c
√
n,

we obtain that E[ct]
E[ct|nt>δn ]

converges to 1 uniformly across t0 ≤ t ≤ t0 + c
√
n. So we must

have that for any ε > 0, there is N > 0 and for any n > N ,

E[ct] ≥
(

1− ε

2

)
E[ct |nt > δn ] ≥ (1− ε)

√
πδn = (1− ε)

√
πδ
√
n,

for any t0 ≤ t ≤ t0 + c
√
n, where the last inequality uses the fact that lim E[ct|nt>δn ]√

πδn
≥ 1

(Jaworski, Theorem 9).14 Importantly, note that the N exhibited above does not depend

on the specific t0 ≤ t ≤ t0 + c
√
n.

13If Pr{nt0+c√n ≤ δn |nt0 ≥ δn} does not converge when n grows, we take a convergent subsequence.
14Note that by E[ct|nt>δn ]√

πδn
≥ E[ct|nt=δn ]√

πδn
and by the markov property, the latter term does not depend

on t. Hence, E[ct|nt>δn ]√
πδn

converges uniformly across t.
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Thus, for any ε > 0, there is N such that for any n > N , we have

E[nt0+c
√
n] = E

nt0 − t0+c
√
n−1∑

k=t0

ck


≤ n−

t0+c
√
n−1∑

k=t0

E[ck]

≤ n−
(
c
√
n
)

(1− ε)
√
πδ
√
n

= n− (1− ε)n = εn.

Otherwise stated, limE[nc√n/n] = 0. This in turn implies that lim Pr{nc√n ≤ δn} = 1, a

contradiction with our assumption that lim Pr{nc√n > δn} = 1.

To recap, we obtain that there is γ > 0 such that lim Pr{nt0+c
√
n ≤ δn |nt0 ≥ δn} > γ.

That γ does not depend on the specific starting date t0 comes from the markov property

of the random process {nt}. �

Lemma 8. Fix any δ > 0 and let c := 1√
πδ

. For any ξ > 0, for any k ∈ N large enough,

lim Pr{nkc√n ≤ δn} > ξ.

Proof. We know by the previous claim that there is γ > 0 such that for n large

enough, Pr{nc√n ≤ δn} > γ. First, note that Pr{n2c
√
n ≤ δn} > γ + (1 − γ)γ. Indeed,

because {nt} is a decreasing sequence, {nc√n ≤ δn} implies {n2c
√
n ≤ δn}. Hence, we have

Pr{n2c
√
n ≤ δn}

= Pr{nc√n ≤ δn}Pr{n2c
√
n ≤ δn

∣∣{nc√n ≤ δn}}+ Pr{nc√n > δn}Pr{n2c
√
n ≤ δn

∣∣{nc√n > δn}}
= Pr{nc√n ≤ δn}+ Pr{nc√n > δn}Pr{n2c

√
n ≤ δn

∣∣{nc√n > δn}}

Applying Claim 1 for t0 = 1, we know that, for n large enough, Pr{nc√n ≤ δn} > γ. In

addition, applying Claim 1 for t0 = c
√
n, we know that, for n large enough, Pr{n2c

√
n ≤

δn
∣∣{nc√n > δn}} > γ. Thus, we obtain Pr{n2c

√
n ≤ δn} ≥ γ + (1− γ)γ, as claimed.

Similar reasoning yields that for each k ∈ N, there is N large enough so that

Pr{nkc√n ≤ δn} >
k∑
`=1

(1− γ)`−1γ = 1− (1− γ)k.

Note that the right-hand side is equal to the cumulative distribution at k of a geometric

distribution with parameter γ. Clearly, this goes to 1 as k increases and so our argument is
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completed. Thus, if we fix any ξ > 0, we can find k large enough so that Pr{nkc√n ≤ δn} > ξ

for any n large enough, as was to be proved. �

We are now ready to prove Proposition 1.

Proof. Fix any α > 0 and ξ < 1, we claim that there is n large enough so that

Pr{T
n
≤ α} > ξ. Consider any δ ∈ (0, α) and fix k ∈ N and c = 1√

πδ
in order to have

lim Pr{nkc√n ≤ δn} > ξ which is well-defined by Claim 2. Note that {nkc√n ≤ δn} implies

that T ≤ kc
√
n+ δn. Because, δ < α, the term on the right-hand side of the inequality is

smaller than αn when n is large enough. Thus, for n large enough, we obtain Pr{nkc√n ≤
δn} ≤ Pr{T ≤ kc

√
n + δn} ≤ Pr{T

n
≤ α}. Now, because lim Pr{nkc√n ≤ δn} > ξ, we

obtain that for n large enough, Pr{T
n
≤ α} > ξ, as claimed. �

D Proof of Proposition 2

We start with the following lemma.

Lemma 9. Fix any O′′ ⊆ O. For any O′ ⊆ O′′, for any `I := (`i)i∈I , `O′ := (`o)o∈O′ and

R∗O′ := (ro)o∈O′,

Pr{RI = `I ,RO′ = `O′ ,R
∗
O′ = rO′ , Ō = O′′} = 0

if `o ≤ ro for some o ∈ O′ and is a strictly positive number which does not depend on `O′

otherwise.

Proof. In the sequel, to save on notations, we let E be {Ō = O′′}. We first note that

Pr{RI = `I ,RO′ = `O′ ,R
∗
O′ = rO′ , E} = 0

if for some o ∈ O′, `o ≤ ro. Indeed, by definition, o points to ro when involved in a cycle.

In addition, o ∈ O′ ⊆ Ō implies that object o is assigned via a long cycle, hence, the

individual he is matched to must have a priority rank strictly greater than ro.

Now, for any `O′ , `
′
O′ satisfying `O′ , `

′
O′ � rO′ , we argue that

Pr{RI = `I ,RO′ = `O′ ,R
∗
O′ = rO′ , E} = Pr{RI = `I ,RO′ = `′O′ ,R

∗
O′ = rO′ , E}.

Indeed, fix a profile of preferences and priorities yielding {RI = `I ,RO′ = `O′ ,R
∗
O′ =

rO′ , E}. For each object o ∈ O′, let i be the individual with rank `′o. Swap i and k :=

TTC(o) in o’s priority ordering. Clearly, k has rank `′o at o. In addition, since for each

object o, ro (the individual o points to when involved in a cycle under the original profile)

has a priority rank higher than both i and k at the original profile (recall that by assumption
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`O′ , `
′
O′ � rO′), each step of the TTC algorithm remains unchanged after the swaps. Hence,

{RI = `I ,RO′ = `′O′ ,R
∗
O′ = rO′ , E} is obtained. Thus, we have an injection from the set of

profiles of preferences and priorities yielding {RI = `I ,RO′ = `O′ ,R
∗
O′ = rO′ , E} to the one

yielding {RI = `I ,RO′ = `′O′ ,R
∗
O′ = rO′ , E}. Given the iid distribution of priority order, it

follows that

Pr{RI = `I ,RO′ = `O′ ,R
∗
O′ = rO′ , E} ≤ Pr{RI = `I ,RO′ = `′O′ ,R

∗
O′ = rO′ , E}.

A similar reasoning shows that the inequality holds in the other direction as well. �

Now, we can complete the proof of Proposition 2. Here again, in the sequel, to save

on notations, we let E be {Ō = O′′}. By the above lemma, for any O1, O2 ⊆ O′ disjoint,

whenever well-defined, Pr{RO1 = `O1 ,RI′ = `I′ | RO2 = `O2 ,R
∗
O′ = rO′ , E} is a positive

number which does not depend on `O2 .
15 Hence, Pr {RO1 = `O1 ,RI′ = `I′ | R∗O′ = rO′ , E}

can be written as∑
`′O2

Pr
{
RO2 = `′O2

| R∗O′ = rO′ , E}Pr{RO1 = `O1 ,RI′ = `I′ | RO2 = `′O2
,R∗O′ = rO′ , E

}
(4)

= Pr {RO1 = `O1 ,RI′ = `I′ | RO2 = `O2 ,R
∗
O′ = rO′ , E}

∑
`′O2

Pr
{
RO2 = `′O2

| JO′ = rO′ , E
}

= Pr {RO1 = `O1 ,RI′ = `I′ | RO2 = `O2 ,R
∗
O′ = rO′ , E}

where `O2 is an arbitrary profile under which the above conditional probability is well-

defined. Hence, conditional on {R∗O′ = rO′} and E , the joint distribution of RO1 and

RI′ does not depend on the specific realization of RO2 . This implies first that (setting

O1 = ∅)

Pr {RI′ ≤ `I′ | RO2 = `O2 ,R
∗
O′ = rO′ , E} = Pr {RI′ ≤ `I′ | R∗O′ = rO′ , E} .

Note that, using Equation (4) for I ′ = ∅, we also obtain that

Pr {RO1 = `O1 | R∗O′ = rO′ , E} = Pr {RO1 = `O1 | RO2 = `O2 ,R
∗
O′ = rO′ , E} (5)

Now, pick an arbitrary o ∈ O1. We have

15Indeed, by the above lemma, Pr{RO2
= `O2

,R∗O′ = rO′ , E} does not depend on `O2
as long as it is

strictly positive. In addition, provided that the conditional distribution is well-defined (i.e., `O2
� rO2

),

Pr{RO1 = `O1 ,RI′ = `I′ ,RO2 = `O2 ,R
∗
O′ = rO′ , E} is equal to 0 if `o < j(o) for some o ∈ O1. In this

case, this remains equal to 0 irrespective of `O2
. Finally, if `O1

� rO1
then the above lemma implies that

Pr{RO1 = `O1 ,RI′ = `I′ ,RO2 = `O2 ,R
∗
O′ = rO′ , E} is a strictly positive number which does not depend

on `O2
.
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Pr {RO1 = `O1 | R∗O′ = rO′ , E} = Pr
{
RO1\{o} = `O1 | Ro = `o,R

∗
O′ = rO′ , E

}
Pr {Ro = `o | R∗O′ = rO′ , E}

= Pr
{
RO1\{o} = `O1 | R∗O′ = rO′ , E

}
Pr {Ro = `o | R∗O′ = rO′ , E}

where the last equality comes from Equation (5) above. Now, applying the argument

inductively, we obtain

Pr {RO1 = `O1 | R∗O′ = rO′ , E} =
∏
o∈O1

Pr {Ro = `o | R∗O′ = rO′ , E} .

Put in another way, conditional on R∗O′ = rO′ and E , {Ro}o∈O′ is a collection of mutually

independent random variables (not necessarily identically distributed). In addition, con-

ditional on {R∗O′ = rO′} and E , for each o ∈ O′, Ro is stochastically dominated by the

uniform distribution over {
⌈
log1+ε(n)

⌉
+ 1, ..., n}. Indeed, the above lemma implies that

for any o ∈ O′, Pr {Ro = `o | R∗O′ = rO′ , E} = 0 if `o ≤ jo and is constant over all possible

`o such that `o > jo. Thus, in the latter case, Pr {Ro = `o | R∗O′ = rO′ , E} = 1
n−jo . Put

in another way, given {R∗O′ = rO′} and E , for o ∈ O′, Ro follows a uniform distribution

over {jo + 1, ..., n}. Since o ∈ O′ ⊆ Ō ⊆ Õ, we must have jo < log1+ε(n) and so Ro

is stochastically dominated by the uniform distribution over {
⌈
log1+ε(n)

⌉
+ 1, ..., n}. To

recap, conditional on {R∗O′ = rO′} and E , {Ro}o∈O′ is a collection of independent random

variables that is stochastically dominated by the collection of |O′| iid random variables

distributed according to a uniform distribution over {
⌈
log1+ε(n)

⌉
+ 1, ..., n}, i.e.,

Pr {RO′ ≤ `O′ | R∗O′ = rO′ , E} =
∏
o∈O′

Pr {Ro ≤ `o | R∗O′ = rO′ , E} (6)

≥
∏
o∈O′

Pr {Yo ≤ `o} .

Now, for any `O′ , `I′ ,

Pr {RO′ ≤ `O′ ,RI′ ≤ `I′ | R∗O′ = rO′ , E}
= Pr {RO′ ≤ `O′ | R∗O′ = rO′ , E}Pr {RI′ ≤ `I′ | RO′ ≤ `O′ ,JO′ = rO′ , E}
≥

∏
o∈O′

Pr {Yo ≤ `o}Pr {RI′ ≤ `I′ | R∗O′ = rO′ , E} .

where the inequality comes from the Equation (6) together with the fact that the distri-

bution of RI′ does not depend on the specific realization of RO′ , as we already claimed.
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Hence, we obtain

Pr {RO′ ≤ `O′ ,RI′ ≤ `I′ | E}
=

∑
rO′

Pr{R∗O′ = rO′ | E}Pr {RO′ ≤ `O′ ,RI′ ≤ `I′ | R∗O′ = rO′ , E}

≥
∑
rO′

Pr{R∗O′ = rO′ | E}
∏
o∈O′

Pr {Yo ≤ `o}Pr {RI′ ≤ `I′ | R∗O′ = rO′ , E}

=
∏
o∈O′

Pr {Yo ≤ `o}
∑
rO′

Pr{R∗O′ = rO′ | E}Pr {RI′ ≤ `I′ | R∗O′ = rO′ , E}

=
∏
o∈O′

Pr {Yo ≤ `o}Pr {RI′ ≤ `I′ | E}

as claimed.

Finally, note further that, conditional on {R∗O′ = rO′} and E , {Ro}o∈O′ stochastically

dominates the collection of |O′| iid random variables X1, ..., X|O′| where the distribution of

Xo is uniform over {1, ..., n}. Using a similar argument as above, we obtain that, condi-

tional on E , {Ro}o∈O′ stochastically dominates the collection of |O′| iid random variables

distributed according to a uniform distribution over {1, ..., n} and we can easily complete

the proof of the second part of the proposition.

E Proof of Corollary 1

Fix x ∈ [0, 1]. Note that, by the above result, given {Ō = O′′}, the collection {1{R̄o ≤
x}}o∈Ō is stochastically dominated by {1{Ȳo ≤ x}}o∈Ō where Ȳo is 1

n
U{
⌈
log1+ε(n)

⌉
+

1, ..., n} which converges in distribution to U [0, 1]. Similarly, given {Ō = O′′}, the collection

{1{Ro ≤ x}}o∈Ō stochastically dominates the collection {1{X̄o ≤ x}}o∈Ō where X̄o is
1
n
U{1, ..., n} which converges in distribution to U [0, 1].

Now, fix any δ > 0 and let us further condition w.r.t. the event that
∣∣Ō∣∣ ≥ (1−δ)n. Note

that the probability of this event goes to 1 as n grows. Now, conditional on
∣∣Ō∣∣ ≥ (1− δ)n
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and {Ō = O′′}, we have,

1

n

∑
o∈O

1
{
R̄o ≤ x

}
=

1

n

∑
o∈Ō

1
{
R̄o ≤ x

}
+
∑
o∈O\Ō

1
{
R̄o ≤ x

}
≤st

∣∣Ō∣∣
n

1∣∣Ō∣∣ ∑
o∈Ō

1
{
R̄o ≤ x

}
+

∣∣O\Ō∣∣
n

≤st (1− δ) 1∣∣Ō∣∣ ∑
o∈Ō

1
{
R̄o ≤ x

}
+ δ

≤st (1− δ) 1∣∣Ō∣∣ ∑
o∈Ō

1{Ȳo ≤ x}+ δ
p−→ (1− δ)x+ δ

where the convergence result is by the LLN. Similarly, we must have that conditional on

the above events,

1

n

∑
o∈O

1
{
R̄o ≤ x

}
≥st (1− δ) 1∣∣Ō∣∣ ∑

o∈Ō

1{X̄o ≤ x} p−→ (1− δ)x.

Hence, conditional on
∣∣Ō∣∣ ≥ (1 − δ)n and {Ō = O′′}, we must have that with probability

going to 1, 1
n

∑
o∈O 1

{
R̄o ≤ x

}
falls in [(1 − δ)x, (1 − δ)x + δ]. This must also be true if

we only condition w.r.t.
∣∣Ō∣∣ ≥ (1− δ)n. Since

∣∣Ō∣∣ ≥ (1− δ)n is a large probability event,

we must have that, unconditionally, with probability going to 1, 1
n

∑
o∈O 1

{
R̄o ≤ x

}
falls

in [(1− δ)x, (1− δ)x+ δ]. Since δ > 0 is arbitrary, this implies that

1

n

∑
o∈O

1
{
R̄o ≤ x

} p−→ x.

F Proof of Corollary 2

Denote Ranki(o) (resp., Ranko(i)) for the rank of object o (individual i) in i’s preferences

(o’s priority ordering). Let us denote by E the joint event {o ∈ Ō and Ranko(i) > R∗o} and

let us first show that

Pr {Ro > Ranko(i) |E,Ri > Ranki(o)} = Pr {Ro < Ranko(i) |E,Ri > Ranki(o)} =
1

2
.

Consider the event {Ri > Ranki(o), Ro > Ranko(i), o ∈ Ō,Ranko(i) > R∗o}. Pick any

preference profile under which this event is true. Let k be the individual with rank Ro (i.e.,

TTC(o) = k). Since o ∈ Ō ⊆ Ô, R∗o < Ro. In addition, by assumption, we must have R∗o <

Ranko(i). Hence, both k and i have a priority ranking at o worse than that of R∗o. Now,
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let us swap k and i in object o’s priority ordering. Because both k and i have a priority

ranking at o worse than that of R∗o, this has no impact on the outcome of TTC. Thus,

we must have {Ri > Ranki(o), Ro < Ranko(i), o ∈ Ō,Ranko(i) > R∗o}. Thus, we have an

injection from the set of profiles of preferences and priorities yielding {Ri > Ranki(o), Ro >

Ranko(i), o ∈ Ō,Ranko(i) > R∗o} to the one yielding {Ri > Ranki(o), Ro < Ranko(i), o ∈
Ō,Ranko(i) > R∗o}, showing that

Pr {Ro > Ranko(i) |E,Ri > Ranki(o)} ≤ Pr {Ro < Ranko(i) |E,Ri > Ranki(o)} .

Clearly, a symmetric reasoning shows that

Pr {Ro > Ranko(i) |E,Ri > Ranki(o)} ≥ Pr {Ro < Ranko(i) |E,Ri > Ranki(o)}

and so we can conclude that

Pr {Ro > Ranko(i) |E,Ri > Ranki(o)} = Pr {Ro < Ranko(i) |E,Ri > Ranki(o)} =
1

2
.

Using a similar reasoning one can show that

Pr {Ro > Ranko(i) |E } = Pr {Ro < Ranko(i) |E } =
1

2
.

Hence, we conclude that

Pr {Ro > Ranko(i) |E,Ri > Ranki(o)} = Pr {Ro > Ranko(i) |E }

put in another way, the probability that Ro > Ranko(i) does not depend on the realization

of event {Ri > Ranki(o)}.
To complete the proof, let us consider the probability that (i, o) blocks TTC given that

event E holds. This is,

Pr {Ro > Ranko(i), Ri > Ranki(o) |E }
= Pr {Ri > Ranki(o) |E }Pr {Ro > Ranko(i) |E,Ri > Ranki(o)}
= Pr {Ri > Ranki(o) |E }Pr {Ro > Ranko(i) |E }

where the last equality holds by our argument above.

Now, we first claim that

|Pr {Ro > Ranko(i), Ri > Ranki(o)} − Pr {Ri > Ranki(o)}Pr {Ro > Ranko(i)}|

goes to 0 as the market grows large. We have shown that conditional on E, this difference

is just equal to 0. Hence, to show this convergence result, it is enough to prove that the
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probability of the joint event E = {o ∈ Ō,Ranko(i) > R∗o} goes to 1. Indeed, we already

know that the probability of {o ∈ Ō} goes to 1. In addition, Ranko(i) follows a uniform

distribution over {1, ..., |I|}. Hence, Pr{Ranko(i) > log1+ε(n)} goes to 1. We also know

that Pr{R∗o < log1+ε(n)} goes to 1. Thus, Pr{Ranko(i) > R∗o} goes to 1 as well and so

Pr(E) goes to 1.

Second, we know that Ranko(i) is a uniform distribution over {1, ..., |I|} and let us ob-

serve the realization of Ranko(i) has no impact on the distribution of Ro. Now, Proposition

2 showing that R̄o converges in distribution to U [0, 1] gives us that Pr {Ro > Ranko(i)} goes

to 1
2
. Taken together the above two points yield∣∣∣∣Pr {Ro > Ranko(i), Ri > Ranki(o)} −

1

2
Pr {Ri > Ranki(o)}

∣∣∣∣
goes to 0 as the market grows large. This completes the proof of the first part of the

statement of Corollary 2 since 1
2

Pr {Ri > Ranki(o)} is equal to the probability that (i, o)

blocks RSD (recall the equivalence result by Carroll (2014)).

Finally, we can easily obtain that the difference between the expected fractions of block-

ing pairs under TTC and that under RSD converges to 0.
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