Chapter 13: Spectroscopy

Methods of structure determination

- Nuclear Magnetic Resonances (NMR) Spectroscopy (Sections 13.3-13.19)
- Infrared (IR) Spectroscopy (Sections 13.20-13.22)
- Ultraviolet-visible (UV-Vis) Spectroscopy (Section 13.23)
- Mass (MS) spectrometry (not really spectroscopy) (Section 13.24)

Molecular Spectroscopy: the interaction of electromagnetic radiation (light) with matter (organic compounds). This interaction gives specific structural information.

13.24: Mass Spectrometry:

The mass spectrometer gives the mass to charge ratio \(\frac{m}{z} \), therefore the sample (analyte) must be an ion.

Mass spectrometry is a gas phase technique- the sample must be “vaporized.”
The Mass Spectrometer

\[\frac{\text{mass}}{\text{charge}} = \frac{m}{z} = \frac{B^2 r^2}{2V} \]

- **B**: magnetic field strength
- **r**: radius of the analyzer tube
- **V**: voltage (accelerator plate)

Ions of non-selected mass/charge ratio are not detected.

Ions of selected mass/charge ratio are detected.

Dalton (Da) or mass unit (u) = units for measuring molecular masses.
One Da = 1/12 the mass of the 12C atom

Monoisotopic (exact) mass – sum of the exact masses of the most abundant isotope of each element in a molecule.
Average mass – sum of the averaged masses of each element in a molecule, weighted according to isotopic abundance.
Nominal mass – mass calculated using the integer mass of the most abundant isotope for each element (H=1, C=12, O=16, N=14, etc.)

Exact Masses of Common Natural Isotopes

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Mass</th>
<th>Natural Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>1.00782</td>
<td>99.985</td>
</tr>
<tr>
<td>2H</td>
<td>2.01410</td>
<td>0.015</td>
</tr>
<tr>
<td>12C</td>
<td>12.0000</td>
<td>98.892</td>
</tr>
<tr>
<td>13C</td>
<td>13.0033</td>
<td>1.108 (1.11%)</td>
</tr>
<tr>
<td>14N</td>
<td>14.00307</td>
<td>99.634</td>
</tr>
<tr>
<td>15N</td>
<td>15.00010</td>
<td>0.366 (0.38%)</td>
</tr>
<tr>
<td>16O</td>
<td>15.99491</td>
<td>99.763</td>
</tr>
<tr>
<td>17O</td>
<td>16.99913</td>
<td>0.037 (0.04%)</td>
</tr>
<tr>
<td>18O</td>
<td>17.99916</td>
<td>0.200 (0.20%)</td>
</tr>
</tbody>
</table>

Isotope | Mass | Natural Abundance |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19F</td>
<td>18.99840</td>
<td>100.00</td>
</tr>
<tr>
<td>35Cl</td>
<td>34.96885</td>
<td>75.77</td>
</tr>
<tr>
<td>37Cl</td>
<td>36.96590</td>
<td>24.23 (32.5%)</td>
</tr>
<tr>
<td>79Br</td>
<td>78.91839</td>
<td>50.69</td>
</tr>
<tr>
<td>81Br</td>
<td>80.91642</td>
<td>49.31 (98%)</td>
</tr>
<tr>
<td>127I</td>
<td>126.90447</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Molecular Ion (parent ion, M) = molecular mass of the analyte; sample minus an electron. (mass of an e\(^-\) is 1/1836 that of a proton)

Base peak- largest (most abundant) peak in a mass spectrum; arbitrarily assigned a relative abundance of 100%.

\[\text{C}_6\text{H}_6 \]
\[m/z = 78.04695 \]
\[m/z = 78 \text{ (M+)} \]
\[(100\%) \]
\[m/z = 79 \text{ (M+1)} \]
\[(~6.6\% \text{ of } M^+) \]

The radical cation (M\(^{+•}\)) is unstable and will fragment into smaller ions:

- \[m/z=15 \]
- \[m/z=16 \text{ (M\(^+\))} \]
- \[m/z=17 \text{ (M+1)} \]
- \[m/z=29 \]
- \[m/z=43 \]
- \[m/z=44 \]
- \[m/z=45 \text{ (M+1)} \]
Mass spectra can be quite complicated and interpretation difficult.

Some functional groups have characteristic fragmentations

It is difficult to assign an entire structure based only on the mass spectrum. However, the mass spectrum gives the mass and formula of the sample, which is very important information.

To obtain the formula, the molecular ion must be observed. (Soft ionization techniques)

Methods have been developed to get large molecules such as polymers and biological macromolecules (proteins, peptides, nucleic acids) into the vapor phase
13.25: Molecular Formula as a Clue to Structure

Nitrogen rule: In general, “small” organic molecules with an odd mass must have an odd number of nitrogens. Organic molecules with an even mass have zero or an even number of nitrogens.

If the mass can be determined accurately enough, then the molecular formula can be determined (high-resolution mass spectrometry).

Information can be obtained from the molecular formula:

Degrees of unsaturation: the number of rings and/or π-bonds in a molecule (Index of Hydrogen Deficiency).

Degrees of unsaturation

- saturated hydrocarbon: C_nH_{2n+2}
- cycloalkane (1 ring): C_nH_{2n}
- alkene (1 π-bond): C_nH_{2n}
- alkyne (2 π-bonds): C_nH_{2n-2}

For each ring or π-bond, $-2H$ from the formula of the saturated alkane

\[
\begin{align*}
\text{C}_6\text{H}_{14} & \rightarrow \text{C}_6\text{H}_{12} & \rightarrow \text{C}_6\text{H}_6 \\
\text{H}_2 & \text{Hydrogen Deficiency} & \text{H}_3 \\
\frac{1}{2} \times 2 = 1 & \text{Degrees of Unsaturation} & \frac{1}{2} \times 8 = 4
\end{align*}
\]
Correction for other elements:
For Group VII elements (halogens): subtract 1H from the H-deficiency for each halogen,
For Group VI elements (O and S): No correction is needed
For Group V elements (N and P): add 1H to the H-deficiency for each N or P

\[\text{C}_{10}\text{H}_{14}\text{N}_2 \quad \text{C}_{12}\text{H}_4\text{O}_2\text{Cl}_4 \]

13.1: Principles of molecular spectroscopy:
Electromagnetic radiation

Electromagnetic radiation has the properties of a particle (photon) and a wave.

\[\lambda = \text{distance of one wave} \]
\[\nu = \text{frequency: waves per unit time (sec}^{-1}, \text{Hz)} \]
\[c = \text{speed of light (}3.0 \times 10^8\text{ m sec}^{-1} \]
\[h = \text{Plank's constant (}6.63 \times 10^{-34}\text{ J sec)} \]
Quantum: the energy of a photon

\[E = h\nu \]
\[\nu = \frac{c}{\lambda} \]
\[E = \frac{hc}{\lambda} \]

\[E \propto \nu \quad E \propto \lambda^{-1} \quad \nu \propto \lambda^{-1} \]

<table>
<thead>
<tr>
<th>Waves</th>
<th>10(^{-11})</th>
<th>10(^{-10})</th>
<th>10(^{-9})</th>
<th>10(^{-8})</th>
<th>10(^{-7})</th>
<th>10(^{-6})</th>
<th>10(^{-5})</th>
<th>10(^{-4})</th>
<th>10(^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma)-rays</td>
<td>short*</td>
<td>high*</td>
<td>high*</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>long</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>X-rays</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultraviolet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrared</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microwaves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiowaves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13.2: Principles of Molecular Spectroscopy: Quantized Energy Levels

molecules have discrete energy levels (no continuum between levels)

\[\Delta E = E_2 - E_1 = h\nu \]

A molecule absorbs electromagnetic radiation when the energy of photon corresponds to the difference in energy between two states
UV-Vis: valance electron transitions
- gives information about π-bonds and conjugated systems

Infrared: molecular vibrations (stretches, bends)
- identify functional groups

Radiowaves: nuclear spin in a magnetic field (NMR)
- gives a map of the H and C framework

13.23 Ultraviolet-Visible (UV-Vis) Spectroscopy

Recall bonding of a π-bond
\(\pi \)-molecular orbitals of butadiene

\(\Psi_1 \): 0 Nodes
- 3 bonding interactions
- 3 antibonding interactions
- ANTIBONDING MO

\(\Psi_2 \): 2 Nodes
- 1 bonding interaction
- 2 antibonding interactions
- ANTIBONDING MO

\(\Psi_3 \): 1 Node
- 2 bonding interactions
- 1 antibonding interaction
- BONDING MO

\(\Psi_4 \): 0 Nodes
- 3 bonding interactions
- 0 antibonding interactions
- BONDING MO

\(\psi_2 \) is the Highest Occupied Molecular Orbital (HOMO)
\(\psi_3 \) is the Lowest Unoccupied Molecular Orbital (LUMO)

UV-Vis light causes electrons in lower energy molecular orbitals to be promoted to higher energy molecular orbitals.

HOMO \(\rightarrow \) LUMO

Chromophore: light absorbing portion of a molecule
Molecular orbitals of conjugated polyenes

<table>
<thead>
<tr>
<th>Energy</th>
<th>Bonding</th>
<th>Antibonding</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 nm</td>
<td>H_2C__CH_2</td>
<td>217 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>258 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>290 nm</td>
</tr>
</tbody>
</table>

Color of absorbed light

<table>
<thead>
<tr>
<th>Color of absorbed light</th>
<th>(\lambda)</th>
<th>Color observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>violet</td>
<td>400 nm</td>
<td>yellow</td>
</tr>
<tr>
<td>blue</td>
<td>450</td>
<td>orange</td>
</tr>
<tr>
<td>blue-green</td>
<td>500</td>
<td>red</td>
</tr>
<tr>
<td>yellow-green</td>
<td>530</td>
<td>red-violet</td>
</tr>
<tr>
<td>yellow</td>
<td>550</td>
<td>violet</td>
</tr>
<tr>
<td>orange</td>
<td>600</td>
<td>blue-green</td>
</tr>
<tr>
<td>red</td>
<td>700</td>
<td>green</td>
</tr>
</tbody>
</table>
Many natural pigments have conjugated systems

Chromophore: light absorbing portion of a molecule

Beer’s Law: There is a linear relationship between absorbance and concentration

\[A = \varepsilon \cdot c \cdot l \]

- \(A \) = absorbance
- \(c \) = concentration (M, mol/L)
- \(l \) = sample path length (cm)
- \(\varepsilon \) = molar absorptivity (extinction coefficient)
 - a proportionality constant for a specific absorbance of an analyte
13.20: Introduction to Infrared Spectroscopy

\[E \propto \frac{1}{\lambda} \]

\(\lambda \) is expressed as \(\bar{\nu} \) (wavenumber), reciprocal cm (cm\(^{-1}\))

\[\bar{\nu} = \frac{1}{\lambda} \quad \text{therefore} \quad E \propto \bar{\nu} \]

IR radiation causes changes in a molecular vibrations

Stretch: change in bond length

http://www2.chem.ucalgary.ca/Flash/photon.html

- Symmetric stretch
- Antisymmetric stretch

Bend: change in bond angle

- Scissoring
- Rocking
- Wagging
- Twisting

Animation of bond stretches and bends:

13.21 Infrared Spectra

Interpretation of an Infrared Spectra:
Organic molecules contain many atoms. As a result, there are many stretching and bending modes and the IR spectrum has many absorption bands

Four distinct regions of an IR spectra

<table>
<thead>
<tr>
<th>Region</th>
<th>Wavenumber (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-H</td>
<td>2500 - 3500</td>
</tr>
<tr>
<td>O-H</td>
<td>1500 - 1700</td>
</tr>
<tr>
<td>N-H</td>
<td>1500 - 2100</td>
</tr>
<tr>
<td>C=O</td>
<td>1700 - 1800</td>
</tr>
<tr>
<td>C≡N</td>
<td>2200 - 2300</td>
</tr>
<tr>
<td>C≡C</td>
<td>2300 - 2400</td>
</tr>
<tr>
<td>C=C</td>
<td>1600 - 1700</td>
</tr>
<tr>
<td>C≡C</td>
<td>1600 - 1800</td>
</tr>
</tbody>
</table>

Hooke’s law simulation:

Bond Stretch:
Hooke’s Law

\[
\nu = \frac{1}{2\pi c} \left(\frac{f}{\left(\frac{m_x m_y}{m_x + m_y} \right)^\frac{1}{2}} \right)
\]

\(\nu \) = vibrational frequency
\(c \) = speed of light
\(m_x \) = mass of X
\(m_y \) = mass of Y

\[\left(\frac{m_x m_y}{m_x + m_y} \right) = \text{reduced mass (\(\mu \))} \]

\(f \) = spring constant; type of bond between X and Y (single, double or triple)
Fingerprint region (500 - 1500 cm\(^{-1}\)): low energy single bond stretching and bending modes. The fingerprint region is unique for any given organic compound. However, there are few diagnostic absorptions.

Double-bond regions (1600 - 1900 cm\(^{-1}\))
- C=C 1620 - 1680 cm\(^{-1}\)
- C=O 1680 - 1850 cm\(^{-1}\)

Triple-bond region: (2100 - 2300 cm\(^{-1}\))
- C≡C 2100 - 2200 cm\(^{-1}\) (weak, often not observed)
- C≡N 2240 - 2280 cm\(^{-1}\)

X-H Single-bond region (2800 - 3600 cm\(^{-1}\))
- O-H 3200 - 3600 cm\(^{-1}\) (broad)
- CO-OH 2500 - 3600 cm\(^{-1}\) (very broad)
- N-H 3350 - 3500 cm\(^{-1}\)
- C-H 2800 - 3300 cm\(^{-1}\)
 - sp\(^3\) –C-H 2850 - 2950 cm\(^{-1}\)
 - sp\(^2\) =C-H 3000 - 3100 cm\(^{-1}\)
 - sp ≡C-H 3310 - 3320 cm\(^{-1}\)

13.22 Characteristic Absorption Frequencies
Table 13.3, p. 552

<table>
<thead>
<tr>
<th>Functional Group</th>
<th>3000 - 3100 cm(^{-1})</th>
<th>1600 - 1680 cm(^{-1})</th>
<th>1450 - 1600 cm(^{-1})</th>
<th>3310 - 3320 cm(^{-1})</th>
<th>1025 - 1200 cm(^{-1})</th>
<th>3200 - 3600 cm(^{-1})</th>
<th>1030 - 1230 cm(^{-1})</th>
<th>3350 - 3500 cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkenes</td>
<td>medium - strong</td>
<td>medium</td>
<td>strong</td>
<td>strong</td>
<td>strong</td>
<td>strong and broad</td>
<td>medium</td>
<td>strong</td>
</tr>
<tr>
<td>C=C</td>
<td>1620 - 1680 cm(^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aromatic</td>
<td>strong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=C</td>
<td>1450 - 1600 cm(^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkynes</td>
<td>strong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=C</td>
<td>2100 - 2200 cm(^{-1})</td>
<td>weak - medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohols</td>
<td>strong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>strong and broad</td>
<td>medium</td>
<td></td>
</tr>
<tr>
<td>C-O</td>
<td>1025 - 1200 cm(^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-H</td>
<td>3200 - 3600 cm(^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amines</td>
<td>medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=N</td>
<td>1030 - 1230 cm(^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-H</td>
<td>3350 - 3500 cm(^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonyl</td>
<td>strong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>strong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>1680 - 1850 cm(^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carboxylic acids</td>
<td>strong and very broad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-H</td>
<td>2500 - 3500 cm(^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrile</td>
<td>weak-medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=N</td>
<td>2240 - 2280 cm(^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Typical IR Absorptions for Functional Groups

<table>
<thead>
<tr>
<th>Functional Group</th>
<th>cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkanes, Alkyl groups</td>
<td></td>
</tr>
<tr>
<td>C-H</td>
<td>2850-2950 (m-s)</td>
</tr>
<tr>
<td>iC-H</td>
<td>3000-3100 (m-e)</td>
</tr>
<tr>
<td>C=C</td>
<td>1600-1650 (m-e)</td>
</tr>
<tr>
<td>Alkenes</td>
<td></td>
</tr>
<tr>
<td>C=C-H</td>
<td>3310-3320 (s)</td>
</tr>
<tr>
<td>C=C</td>
<td>2100-2260 (m-e)</td>
</tr>
<tr>
<td>Alkynes</td>
<td></td>
</tr>
<tr>
<td>C=C-H</td>
<td>3310-3320 (s)</td>
</tr>
<tr>
<td>C=C</td>
<td>2100-2260 (m-e)</td>
</tr>
<tr>
<td>Alkyl Halides</td>
<td></td>
</tr>
<tr>
<td>C-Cl</td>
<td>600-620 (m-s)</td>
</tr>
<tr>
<td>C-Br</td>
<td>500 (s)</td>
</tr>
<tr>
<td>C-I</td>
<td>500 (s)</td>
</tr>
<tr>
<td>Alcohols</td>
<td></td>
</tr>
<tr>
<td>C-H</td>
<td>3200-3600 (b, m-s)</td>
</tr>
<tr>
<td>C-O</td>
<td>1025-1200 (s)</td>
</tr>
<tr>
<td>Aromatics</td>
<td></td>
</tr>
<tr>
<td>C=C</td>
<td>3000-3100 (m-s)</td>
</tr>
<tr>
<td>C=H</td>
<td>1450-1600 (m-e)</td>
</tr>
<tr>
<td>Amides</td>
<td></td>
</tr>
<tr>
<td>NH</td>
<td>3350-3500 (br, m)</td>
</tr>
<tr>
<td>Amide</td>
<td></td>
</tr>
<tr>
<td>NH</td>
<td>3180-3350 (br, m-w)</td>
</tr>
<tr>
<td>C=O</td>
<td>1680-1700 (s)</td>
</tr>
<tr>
<td>Carbonyl Group</td>
<td></td>
</tr>
<tr>
<td>CO (asym)</td>
<td>1650-1780 (s)</td>
</tr>
<tr>
<td>C=O</td>
<td>~1280 (s)</td>
</tr>
<tr>
<td>Carbonyl Group</td>
<td></td>
</tr>
<tr>
<td>CO (sym)</td>
<td>2500-3100 (br, s)</td>
</tr>
<tr>
<td>C=O</td>
<td>1700-1725 (s)</td>
</tr>
<tr>
<td>Nitriles</td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>2240-2250 (w-m)</td>
</tr>
<tr>
<td>Nitro Group</td>
<td></td>
</tr>
<tr>
<td>NO₂</td>
<td>1540 (s)</td>
</tr>
</tbody>
</table>

http://as.vanderbilt.edu/chemistry/Rizzo/Chem220b/IR.pdf
13.3: Introduction to 1H NMR

direct observation of the H’s of a molecules

Nuclei are positively charged and spin on an axis; they create a tiny magnetic field

Not all nuclei are suitable for NMR.
1H and 13C are the most important NMR active nuclei in organic chemistry

Natural Abundance

1H 99.9%
13C 1.1%
12C 98.9% (not NMR active)

(a) Normally the nuclear magnetic fields are randomly oriented
(b) When placed in an external magnetic field (B_0), the nuclear magnetic field will either aligned with (lower energy) or oppose (higher energy) the external magnetic field

Fig 13.3, p. 513
The energy difference between aligned and opposed to the external magnetic field (B_0) is generally small and is dependent upon B_0.

Applied EM radiation (radio waves) causes the spin to flip and the nuclei are said to be in resonant with B_0.

\[
\Delta E = h \nu \\
\Delta E = \frac{\gamma B_0 h}{2 \pi}
\]

B_0 = external magnetic field strength
\[\gamma = \text{gyromagnetic ratio}\]
\[^1\text{H} = 26.8\]
\[^1^3\text{C} = 6.7\]

Note that \(\frac{h}{2\pi}\) is a constant and is sometimes denoted as \(\hbar\).

NMR Active Nuclei: nuclear spin quantum number (I)
atomic mass and atomic number

Number of spin states = 2I + 1 (number of possible energy levels)

Even mass nuclei that have even number of neutrons have I = 0 (NMR inactive)

Even mass nuclei that have an odd number of neutrons have an integer spin quantum number (I = 1, 2, 3, etc)

Odd mass nuclei have half-integer spin quantum number (I = 1/2, 3/2, 5/2, etc)

- I = 1/2: ^1H, ^{13}C, ^{19}F, ^{31}P
- I = 1: ^2H, ^{14}N
- I = 3/2: ^{15}N
- I = 0: ^{12}C, ^{16}O
13.4: Nuclear Shielding and 1H Chemical Shift

Different nuclei absorb EM radiation at different wavelength (energy required to bring about resonance)

Nuclei of a given type, will resonate at different energies depending on their chemical and electronic environment.

The position (chemical shift, δ) and pattern (splitting or multiplicity) of the NMR signals gives important information about the chemical environment of the nuclei. The integration of the signal is proportional to the number of nuclei giving rise to that signal.
Chemical shift: the exact field strength (in ppm) that a nuclei comes into resonance relative to a reference standard (TMS).

Electron clouds “shield” nuclei from the external magnetic field causing them to resonate at slightly higher energy.

Shielding: influence of neighboring functional groups on the electronic structure around a nuclei and consequently the chemical shift of their resonance.

![Diagram](image)

Vertical scale= intensity of the signal

Horizontal scale= chemical shift (δ), dependent upon the field strength of the external magnetic field; for 1H, δ is usually from 1-10 ppm

\[
δ = \frac{ν - ν_{TMS}}{ν_{TMS}} \text{ chemical shift in Hz} \div \text{operating frequency in MHz}
\]

14,100 gauss: 60 MHz for 1H (60 million hertz) ppm = 60 Hz

15 MHz for 13C

140,000 gauss: 600 MHz for 1H ppm = 600 Hz

150 MHz for 13C
13.5: Effect of Molecular Structure on 1H Chemical Shift

Electronegative substituents deshield nearby protons

<table>
<thead>
<tr>
<th>Less shielded</th>
<th>More shielded</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{H}_3\text{C-F}$</td>
<td>$\text{H}_3\text{C-CH}_3$</td>
</tr>
<tr>
<td>δ 4.3</td>
<td>δ 3.2</td>
</tr>
</tbody>
</table>

The deshielding effect of a group drops off quickly with distance (number of bonds between the substituent and the proton)

$$\text{H}_3\text{C-H}_2\text{C-H}_2\text{C-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_3$$

$$\delta = \begin{cases} 1.37 & 3.40 \\ 0.92 & 1.55 \end{cases}$$

The influence of neighboring groups (deshielding) on 1H chemical shifts is cumulative

\[
\begin{align*}
\text{Cl-H-Cl} & \quad \text{Cl-H-Cl} & \quad \text{Cl-H-H} \\
\delta &= 7.3 & 5.3 & 3.1 \text{ ppm} \\
\text{CH}_3\text{CH}_2\text{O-H} & \quad \text{CH}_3\text{CH}_2\text{O-Cl} & \quad \text{CH}_3\text{CH}_2\text{Cl-H} \\
\delta &= 2.1 & 4.06 & 5.96 \text{ ppm}
\end{align*}
\]
Typical 1H NMR chemical shifts ranges – additional substitution can move the resonances out of the range (Fig. 13.8, p. 518)

Protons attached to sp2 and sp hybridize carbons are deshielded relative to protons attached to sp3 hybridized carbons

\[\delta = 9.7 \quad 7.3 \quad 5.3 \quad 2.1 \quad 0.9-1.5 \text{ ppm} \]

Please read about ring current effects of π-bonds (Figs. 13.9-13.11, p. 519–522)

\[\delta = 2.3 - 2.8 \quad 1.5 - 2.6 \quad 2.1-2.5 \text{ ppm} \]
13.6: Interpreting 1H NMR Spectra

Equivalence (chemical-shift equivalence): chemically and magnetically equivalent nuclei resonate at the same energy and give a single signal or pattern.

\[\delta = 3.50 \text{ ppm} \]

\[\delta = 4.20 \text{ ppm} \]

\(3H\)

\(2H\)
Test of Equivalence:

1. Do a mental substitution of the nuclei you are testing with an arbitrary label (–X)
2. Ask what is the relationship of the compounds with the arbitrary label
3. If the labeled compounds are identical (or enantiomers), then the original nuclei are chemically equivalent and do not normally give rise to separate resonances in the NMR spectra

 If the labeled compounds are not identical (and not enantiomers), then the original nuclei are not chemically equivalent and can give rise to different resonances in the NMR spectra

These are geometric isomers (not identical and not enantiomers). The three methyl groups are therefore not chemically equivalent and can give rise to different resonances.
Homotopic: equivalent
Enantiotopic: equivalent
Diastereotopic: non-equivalent
Integration of 1H NMR resonances: The area under an NMR resonance is proportional to the number of equivalent nuclei that give rise to that resonance.

The relative area under the resonances at $\delta = 4.20$ and 3.50 is $2:3$.

13.7: Spin-Spin Splitting and 1H NMR

Protons on adjacent carbons will interact and “split” each other's resonances into multiple peaks (multiplets).

$n + 1$ rule: Equivalent protons that have n equivalent protons on the adjacent carbon will be “split” into $n + 1$ peaks.

Resonances always split each other. The resonance at $\delta = 4.1$ splits the resonance at $\delta = 1.2$; therefore, the resonance at $\delta = 1.2$ must split the resonance at $\delta = 4.2$.
The *multiplicity* is defined by the number of peaks and the pattern (see Table 13.2 for common multiplicities patterns and relative intensities)

The resonance of a proton with \(n \) equivalent protons on the adjacent carbon will be “split” into \(n + 1 \) peaks with a *coupling constant* \(J \).

Coupling constant: distance between peaks of a split pattern; \(J \) is expressed in Hz. Protons coupled to each other have the same coupling constant \(J \).
13.8: Splitting Patterns: The Ethyl Group

Two equivalent protons on an adjacent carbon will split a proton into a triplet (t), three peaks of 1:2:1 relative intensity.

Three equivalent protons on an adjacent carbon will split a proton into a quartet (q), four peaks of 1:3:3:1 relative intensity.

13.9: Splitting Patterns: The Isopropyl Group

One proton on an adjacent carbon will split a proton into a doublet (d), two peaks of 1:1 relative intensity.

Six equivalent protons on an adjacent carbon will split a proton into a septet (s), seven peaks of 1:6:15:20:15:6:1 relative intensity.
13.10: Splitting Patterns: Pairs of Doublets

\[\delta = 8.0, \text{ d,} \quad J = 9.0 \quad 2H \]
\[\delta = 7.4, \text{ d,} \quad J = 9.0 \quad 2H \]
\[\delta = 3.9, \text{ s,} \quad 3H \]
\[\delta = 7.4, \text{ d,} \quad J = 9.0 \quad 2H \]
\[\delta = 8.0, \text{ d,} \quad J = 9.0 \quad 2H \]

Fig. 13.20, p. 531

13.11: Complex Splitting Patterns: when a proton is adjacent to more than one set of non-equivalent protons, they will split independently

\[J_{1-2} = 7.0 \]
\[J_{2-3} = 16.0 \]
\[J_{1-2} = 7.0 \]
\[J_{2-3} = 16.0 \]

\(H_2 \) splits \(H_3 \) into a doublet with coupling constant \(J_{2-3} = 16.0 \)
\(H_2 \) splits \(H_1 \) into a doublet with coupling constant \(J_{1-2} = 7.0 \)
\(H_1 \) splits \(H_2 \) into a doublet with coupling constants \(J_{1-2} = 7.0 \); \(H_3 \) further splits \(H_2 \) into a doublet (doublet of doublets) with coupling constants \(J_{2-3} = 16.0 \)
13.12: 1H NMR Spectra of Alcohols

Usually no spin-spin coupling between the O–H proton and neighboring protons on carbon due to exchange reaction

The chemical shift of the -OH proton occurs over a large range (2.0 - 5.5 ppm). This proton usually appears as a broad singlet. It is not uncommon for this proton not to be observed.

13.13: NMR and Conformation (please read)

NMR is like a camera with a slow shutter speed. What is observed is a weighted time average of all conformations present.
Summary of 1H-1H Spin-Spin Coupling

- chemically equivalent protons do not exhibit spin-spin coupling to each other.
- the resonance of a proton that has n equivalent protons on the adjacent carbon is split into $n+1$ peaks (multiplicity) with a coupling constant J.
- protons that are coupled to each other have the same coupling constant.
- non-equivalent protons will split a common proton independently: complex coupling.

Spin-spin coupling is normally observed between nuclei that are one, two and three bonds away. Four-bond coupling can be observed in certain situations (i.e., aromatic rings), but is not common.

Summary of 1H-NMR Spectroscopy

- the number of proton resonances equals the number of non-equivalent protons.
- the chemical shift (δ, ppm) of a proton is diagnostic of the chemical environment (shielding and deshielding).
- Integration: number of equivalent protons giving rise to a resonance.
- spin-spin coupling is dependent upon the number of equivalent protons on the adjacent carbon(s).
13.14: 13C NMR Spectroscopy:

Natural Abundance

1H 99.9% (I= 1/2) 12C 98.9% (I= 0) 13C 1.1% (I= 1/2)

$\Delta E = \frac{\gamma B_0 h}{2 \pi}$

$B_0 = $ external magnetic field strength

$\gamma = $ magnetogyric ratio

1H= 26.8

13C= 6.7

13C is a much less sensitive nuclei than 1H for NMR spectroscopy

New techniques (hardware and software) has made 13C NMR routine

- Pulsed NMR techniques (FT or time domain NMR)
- Signal averaging (improved signal to noise)

Animation: http://www.chem.uky.edu/research/miller/NMR_Movie/puls_evol.gif

Fourier Transform (FT) deconvolutes all of the FID’s and gives an NMR spectra.

Signal-averaging: pulsed NMR allows for many FID’s (NMR spectra) to be accumulated over time. These FID’s are added together and averaged. Signals (resonances) build up while the “noise” is random and cancels out during the averaging.

Enhanced signal to noise ratio and allows for NMR spectra to be collected on insensitive nuclei such as 13C and small samples.

13C-spectra of CH$_3$CH$_2$CH$_2$CH$_2$OH

After one scan

Average of 200 scans
Chemical shifts give an idea of the chemical and electronic environment of the 13C nuclei due to shielding and deshielding effects. The range is 0 - 220 ppm from TMS.

13C NMR spectra will give a map of the carbon framework. The number of resonances equals the number of non-equivalent carbons.

![13C NMR spectrum](http://as.vanderbilt.edu/chemistry/Rizzo/Chem220b/NMR.pdf)

13.15: 13C Chemical Shifts

The chemical shift range of 13C – see Table 13.2 (p. 538)

![Chemical Shift Range of 13C](http://as.vanderbilt.edu/chemistry/Rizzo/Chem220b/NMR.pdf)

Note the carbonyl range.
13.16: \(^{13}\text{C} \text{NMR and Peak Intensities}\) (please read) - \(^{13}\text{C} \text{NMR peak integration are not generally useful}\)

13.17: \(^{13}\text{C}-^{1}\text{H Coupling}\)

\(^{1}\text{H}-^{13}\text{C} \text{spin-spin coupling are usually “turned off” in the }^{13}\text{C spectra (broadband decoupled). However, spin-spin coupling tells how many protons are attached to the }^{13}\text{C nuclei. (i.e., primary, secondary tertiary, or quaternary carbon)}\)

13.18: \text{Using DEPT to Count Hydrogens Attached to }^{13}\text{C}\)

\(^{13}\text{C} \text{spectra are usually collected with the }^{1}\text{H}-^{13}\text{C} \text{coupling “turned off” (broad band decoupled). In this mode all }^{13}\text{C resonances appear as singlets.}\)

DEPT spectra (\text{D}istortionless \text{E}nhancement by \text{P}olarization \text{T}ransfer) a modern \(^{13}\text{C} \text{NMR spectra that allows you to determine the number of attached hydrogens.}\)

\[
\begin{array}{c}
\text{CH}_2 \text{’s (methylenes) give negative resonances} \\
\text{CH’ s (methines) and CH}_3 \text{’ s (methyls) give positive resonances} \\
\text{Quaternary carbon (no attached H’ s) are not observed}\end{array}
\]

13.19: \text{2D NMR: COSY and HETCOR (please read)}
Solving Combined Spectra Problems:

Mass Spectra:
- **Molecular Formula**
 - **Nitrogen Rule** → # of nitrogen atoms in the molecule
 - **M+1 peak** → # of carbons
- **Degrees of Unsaturation:** # of rings and/or π-bonds

Infrared Spectra:
- **Functional Groups**
 - C=O → O-H
 - C=C → N-H
 - C≡C → CO-OH
 - C≡N

1H NMR:
- **Chemical Shift (δ)** → chemical environment of the H's
- **Integration** → # of H's giving rise to the resonance
- **Spin-Spin Coupling (multiplicity)** → # of non-equivalent H's on the adjacent carbons (vicinal coupling).

^{13}C NMR:
- # of resonances → symmetry of carbon framework
- **Type of Carbonyl**

Each piece of evidence gives a fragment (puzzle piece) of the structure. Piece the puzzle together to give a proposed structure. The proposed structure should be consistent with all the evidence.

Problem 13.43

Problem 13.44

Problem 13.46: C₅H₁₀O

1³C NMR:

- 7.9
- 35.5
- 212.1
Chapter 15: Alcohols, Diols, and Thiols
15.1: Sources of Alcohols (Table 15.1, p. 616)

Hydration of alkenes (Chapter 6)
 1. Acid-catalyzed hydration (Chapter 6.6)
 2. Oxymercuration (p. 258-9)
 3. Hydroboration (Chapter 6.8)

Hydrolysis of alkyl halides (Chapter 8.1)
 nucleophilic substitution

Reaction of Grignard or organolithium reagents with ketones, aldehydes, and esters. (Chapter 14.5)

Reduction of aldehydes, ketones, esters, and carboxylic acids (Chapters 15.2 - 15.3)

Reaction of epoxides with Grignard Reagents (Chapter 15.4)

Diols from the dihydroxylation of alkenes (Chapter 15.5)