ON THE SEMI-HYPONORMAL n-TUPLE OF OPERATORS

Daoxing Xia

The theory of singular integral model and trace formula is extended to the context of hyponormal or semi-hyponormal n-tuple of operators. The spectrum of noncommutative n-tuple of operators is examined.

§1. INTRODUCTION

The theory of singular integral model and trace formula of hyponormal operators [9], [10], [12], [16], [17], semi-hyponormal operators [18] or nearly normal operators [2], [12] is now well known; and the theme appears with many variations.

We wish to extend this theory to n-tuple of operators and to establish a theory corresponding to singular integral of multivariables. Certainly some mathematicians have extended the theory in some important cases (cf. [3], [4], [8]). But it seems that the case which we have examined in this paper perhaps is a direct one.

In §2, we give the definition of semi-hyponormal tuple of operators and its general polar symbols. Besides, a special class of singular integral operator in the space of vector-valued square integrable functions is introduced.

In §3, the singular integral model of the semi-hyponormal tuple of operators is established.

In §4, the spectrum of semi-hyponormal tuple of operators is defined. The relation between the spectrum of semi-hyponormal tuple of operators and the joint approximated point spectrum of its general polar symbols is found.

In §5, the trace formula of semi-hyponormal tuple is established under certain conditions. A small part of Pincus' theory of principal function [1], [2], [3], [4] is generalized to
the semi-hyponormal tuple case. Also for the semi-hyponormal tuple, an inequality similar to Putnam's inequality [14] is proved.

In §6, the definitions and theorems corresponding to the hyponormal case are introduced.

§2. DEFINITIONS AND SINGULAR INTEGRAL OPERATORS

In this paper, \mathcal{H} is a separable complex Hilbert space, $\mathcal{L}(\mathcal{H})$ is the algebra of all linear bounded operators in \mathcal{H}, $\mathcal{U} = (\mathcal{U}_1, \ldots, \mathcal{U}_n)$ is a commuting n-tuple of unitary operators in \mathcal{H}, (\mathcal{U}') being the set of all operators in $\mathcal{L}(\mathcal{H})$ which commute \mathcal{U}. Let Q_j be the mapping in $\mathcal{L}(\mathcal{H})$ defined by

$$Q_j T = T - \mathcal{U}_j T \mathcal{U}_j^{-1}$$

for all $T \in \mathcal{L}(\mathcal{H})$ and $j = 1, 2, \ldots, n$. It is evident that

$$Q_j Q_k T = Q_k Q_j T.$$

If $A \in \mathcal{L}(\mathcal{H})$, $A \geq 0$ and

$$Q_j \cdots Q_{j_m} A \geq 0$$

for all $1 \leq j_1 < j_2 < \ldots < j_m \leq n$, then A is said to be in the class $\text{SH}(\mathcal{U})$, and the $(n+1)$-tuple (\mathcal{U}, A) is said to be semi-hyponormal. For $n = 1$, $(\mathcal{U}_1 A)$ is semi-hyponormal iff the operator $\mathcal{U}_1 A$ is semi-hyponormal [18]. For fixed \mathcal{U}, the linear combination of operators in $\text{SH}(\mathcal{U})$ with nonnegative coefficients is in $\text{SH}(\mathcal{U})$, i.e., $\text{SH}(\mathcal{U})$ is a cone in $\mathcal{L}(\mathcal{H})$. If $A \in \text{SH}(\mathcal{U})$ and $B \in \mathcal{U}'$, then

$$B^* A B \in \text{SH}(\mathcal{U}).$$

A set of operators $\{R_1, \ldots, R_N\}$ in $\text{SH}(\mathcal{U})$ is called a basis of $\text{SH}(\mathcal{U})$ if for every $A \in \text{SH}(\mathcal{U})$ there exist operators B_1, \ldots, B_N in \mathcal{U}' such that

$$A = \sum_{j=1}^{N} B_j^* R_j B_j.$$

Let \mathcal{J}_j^\pm be the set of all operators $T \in \mathcal{L}(\mathcal{H})$, for which

$$\mathcal{J}_j^\pm T = \text{st - lim}_{n \to \infty} \mathcal{U}_j^{-n} T \mathcal{U}_j^n$$

exists. If $T \in \mathcal{J}_j^+ \cap \mathcal{J}_j^-$, then the operators $\mathcal{J}_j^\pm T$ are called the polar symbols [18] of T with respect to \mathcal{U}_j. It is evident
that \(T \in \mathcal{F}_{j}^{\pm} \) iff
\[
F_{j}^{-} T = \operatorname{st-lim}_{N \to \infty} \sum_{n=1}^{N} u_{j}^{-n}(Q_{j} T) u_{j}^{n}
\]
e [18], and \(T \in \mathcal{F}_{j}^{-} \) iff
\[
F_{j}^{-} T = \operatorname{st-lim}_{N \to \infty} \sum_{n=0}^{N} u_{j}^{n}(Q_{j} T) u_{j}^{-n}
\]exists. If \(T \in \mathcal{L}(\mathcal{H}) \) and \(Q_{j} T \geq 0 \), then \(T \in \mathcal{F}_{j}^{\pm} \), \(T \preceq \mathcal{F}_{j}^{+} T \) and
\[
T = \mathcal{F}_{j}^{\pm} T + F_{j}^{\pm} T.
\]Thus \(\mathcal{SH}(\mathcal{U}) \subset \mathcal{F}_{j}^{\pm} \), for \(j = 1, 2, \ldots, n \). For simplicity, hitherto \(F_{j}^{-} \) and \(\mathcal{F}_{j}^{-} \) are also denoted by \(F_{j} \) and \(\mathcal{F}_{j} \) respectively.

Let \(\mathcal{B} \) be an auxiliary separable complex Hilbert space, \(T \) be the unit circle \(\{ z : |z| = 1 \} \), \(T^{n} = T_{1} \times \cdots \times T_{n} \), where each \(T_{j} \) is a copy of \(T \), \(\mathcal{B} \) be the \(\sigma \)-algebra of all Borel sets in \(T^{n} \), \(m_{j} \) be the normalized Haar measure in \(T_{j} \), i.e.,
\[
dm_{j}(e^{i\theta_{j}}) = \frac{1}{2\pi} d\theta_{j}, \quad e^{i\theta_{j}} \in T_{j},
\]
and \(\nu_{j} \) be a singular measure on \(T_{j} \). Let \(\mu = \mu_{1} \times \cdots \times \mu_{n} \) and \(m = m_{1} \times \cdots \times m_{n} \), then \(\mu = m+\nu \), where \(\nu \) is a singular measure. Let \(\Omega \) be the measure space \((T^{n}, \mathcal{B}, \mu)\), \(R(\cdot) \) a projection valued function which is defined on \(T^{n} \) and measurable with respect to \(\mathcal{B} \), and \(\hat{\mathcal{H}} = L^{2}(\Omega, \mathcal{B}, R) \) be the Hilbert space of all \(\mathcal{B} \)-valued measurable functions \(f \) satisfying
\[
\|f\|^{2} = \int_{T^{n}} \|f(z)\|_{\mathcal{B}}^{2} d\mu(z) < +\infty
\]
and \(R(z)f(z) = f(z) \) for all \(z \in T^{n} \). Let \(S^{n} \) be the family of all subsets of \(\{1, 2, \ldots, n\} \). For \(\eta \in \mathcal{S}^{n} - \{\{1, 2, \ldots, n\}, \emptyset\} \), let \(T_{j}^{\eta} = \bigotimes_{j \in \eta} T_{j} \), \(\mathcal{B}^{\eta} \) be the \(\sigma \)-algebra of all the Borel sets in \(T_{j}^{\eta} \), \(\mu^{\eta} = \bigotimes_{j \in \eta} \mu_{j} \), \(\Omega^{\eta} = (T_{j}^{\eta}, \mathcal{B}^{\eta}, \mu^{\eta}) \) and
\[
\mathcal{B}^{\eta} = L^{2}(\Omega_{\frac{1}{\eta}}, \mathcal{B})
\]
where \(\frac{1}{\eta} = \{1, 2, \ldots, n\} - \eta \). Then every function \(f \in \mathcal{H} \) may be considered as a \(\mathcal{B}^{\eta} \)-valued function \(f^{\eta} \) on \(T_{j}^{\eta} \) which is measurable with respect to \(\mathcal{B}^{\eta} \) and satisfying
\[
R^{\eta}(z^{\eta})f^{\eta}(z^{\eta}) = f^{\eta}(z^{\eta}), \quad z^{\eta} \in T_{j}^{\eta}
\]
where \(R^{\eta}(z^{\eta}), z^{\eta} \in T_{j}^{\eta} \) is the projection from \(\mathcal{B}^{\eta} \) to the
subspace of all functions \(g(z^5), z^5 \in T^5 \) satisfying
\[
R(z^\eta, z^5)g(z^5) = g(z^5), \quad \xi \in T^5.
\]
If \(\eta = \{1, 2, \ldots, n\} \) then \(\Omega^\eta, \Theta^\eta \) and \(R^\eta \) denote \(\Omega, \Theta \) and \(R \) respectively. Thus \(\hat{\eta} = L^2(\Omega^\eta, \Theta^\eta, R^\eta) \) for \(\eta \in S_n - \{\varnothing\} \). Since \(\mu^\eta = m^\eta + v^\eta \), where \(m^\eta = \sum_{j \in \eta} m_j \) and \(v^\eta \) is a singular measure in \(T^\eta \) which concentrates at a \(m^\eta \)-null set \(F^\eta \), we have
\[
L^2(\Omega^\eta, \Theta^\eta) = L^2((T^\eta, \Theta^\eta, m^\eta), \Theta^\eta) \otimes L^2((T^\eta, \Theta^\eta, v^\eta), \Theta^\eta). \quad (4)
\]
For \(\eta = (j_1, \ldots, j_m) \), let \(\vartheta_{\eta} \) be the projection from \(L^2((T^\eta, \Theta^\eta, m^\eta), \Theta^\eta) \) to the Hardy space \(H^2((T^\eta, \Theta^\eta, m^\eta), \Theta^\eta) \) of all functions
\[
st_{-\infty} \sum_{n=0}^N f_n z^n, \quad z^n \in T^n
\]
satisfying \(f_\eta \in \Theta^\eta \) and \(\sum_n \| f_n \|_{\Theta^\eta}^2 < +\infty \), i.e.,
\[
(\vartheta_{\eta} f)(z_{j_1}, \ldots, z_{j_m}) = \text{st- lim}_{r \to 0} \left(\frac{1}{2\pi} \int \frac{dv}{v - rz_{j}} \right) f(v_{1}, v_{2}, \ldots, v_{m}).
\]
From (4), the operator \(\vartheta_{\eta} \) extends to a projection, which is still denoted by \(\vartheta_{\eta} \), in \(L^2(\Omega^\eta, \Theta^\eta) \) by defining
\[
\vartheta_{\eta} f = 0
\]
for \(f \in L^2((T^\eta, \Theta^\eta, v^\eta), \Theta^\eta) \). Further, let \(\vartheta_{\varnothing} = I \).

Let \(\hat{\vartheta} = (\hat{\vartheta}_1, \ldots, \hat{\vartheta}_n) \) be the \(n \)-tuple of unitary operators in \(\hat{N} \) defined by
\[
(\hat{\vartheta}_j f)(z_1, \ldots, z_n) = z_j f(z_1, \ldots, z_n), \quad (5)
\]
and \(\mathcal{M}(R(\cdot)) \) be the set of all bounded \(\mathcal{L}(\mathcal{B}) \)-valued measurable functions \(\alpha(\cdot) \) on \(T^n \) satisfying
\[
\alpha(z) = R(z)\alpha(z).
\]
If \(\{\alpha_\eta, \eta \in S_n\} \) is a subset of \(\mathcal{M}(R(\cdot)) \), then it is easy to prove that the operator
\[
\hat{A} = \sum_{\eta \in S_n} \alpha_\eta^* \vartheta_{\eta} \alpha_\eta \quad (6)
\]
is in $SH(\mathcal{U})$. In the next section, we shall prove that every operator in $SH(\mathcal{U})$ must be unitarily equivalent to one of the form (6) and then it is called the singular integral model of the operator in $SH(\mathcal{U})$.

§3. SINGULAR INTEGRAL MODEL OF SEMI-HYPONORMAL (n+1)-TUPLE OF OPERATORS

The following lemma gives a decomposition of an operator in $SH(\mathcal{U})$.

Lemma 1. If $A \in SH(\mathcal{U})$, then

$$A = \sum_{\eta \in \mathcal{S}_n} \prod_{j \in \eta} F_j \prod_{j \notin \eta} \mathcal{J}_j A.$$

Proof. From (3), it follows that

$$A = \prod_{j=1}^{n} (F_j + \mathcal{J}_j) A.$$

Let $T = \mathcal{J}_1 \cdots \mathcal{J}_m A$. We have to prove

$$\mathcal{J}_k \mathcal{J}_j T = \mathcal{J}_j \mathcal{J}_k T.$$

Since \mathcal{U}_j commutes $\mathcal{U}_1, \cdots, \mathcal{U}_m$, it is obvious that

$$Q_k T = \mathcal{J}_j \cdots \mathcal{J}_m Q_k A \geq 0$$

and also $Q_j T \geq 0$. Hence $T \in \mathcal{F}_j \cap \mathcal{F}_k$ and $\mathcal{U}_k^n \mathcal{U}_k^{-n} \geq \mathcal{J}_k T$ for $n \geq 0$. Thus

$$\mathcal{U}_k^n (\mathcal{J}_j T) \mathcal{U}_k^{-n} = \mathcal{J}_j \mathcal{U}_k^n \mathcal{U}_k^{-n} \geq \mathcal{J}_j \mathcal{J}_k T.$$

But $\{\mathcal{U}_k^n \mathcal{U}_k^{-n}, n=1,2,\ldots\}$ is a monotonic sequence, and its limit is $\mathcal{J}_j \mathcal{J}_k T$. From (10), it follows that

$$\mathcal{J}_j \mathcal{J}_k T \geq \mathcal{J}_j \mathcal{J}_k T$$

for any j and k, which proves (9). Thus

$$\mathcal{J}_k F_j T = \mathcal{J}_k T - \mathcal{J}_k \mathcal{J}_j T = \mathcal{J}_k T - \mathcal{J}_j \mathcal{J}_k T = F_j \mathcal{J}_k T.$$

Expanding the product in the right-hand side of (8), it equals the right-hand side of (7), since (11).

Theorem 1. If $\mathcal{U} = (\mathcal{U}_1, \cdots, \mathcal{U}_n)$ is a commuting n-tuple of unitary operators in the Hilbert space \mathcal{H}, and $A \in SH(\mathcal{U})$, then there exists a certain $\mathcal{H} = L^2(\Omega, \mathcal{B}, \mathcal{P}(\cdot))$, (cf. §2), and a
unitary operator W from \mathcal{K} onto $\hat{\mathcal{K}}$ such that

$$W\hat{u}_jW^{-1} = \hat{u}_j$$

and

$$WAW^{-1} = \sum_{\eta \in S_n} \alpha^*_{\eta} \eta \eta,$$

where $\alpha_\eta, \eta \in S_n$ are the multiplication operators of function $\alpha_\eta(\cdot) \in \mathcal{M}(R(\cdot))$.

PROOF. For $\eta = (j_1, \ldots, j_m) \in S_n-[\emptyset]$, it is easy to show that

$$\prod_{j \in \eta} (\mathcal{H}_j^+ - \mathcal{H}_j) \prod_{j \in \eta} \mathcal{H}_j \geq 0.$$

Take its positive square root A_η, i.e.,

$$A_\eta = \left[\prod_{j \in \eta} (\mathcal{H}_j^+ - \mathcal{H}_j) \prod_{j \in \eta} \mathcal{H}_j \right]^{1/2}.$$

It is evident that $A_\eta \in \mathcal{K}'$. Let R_η be the projection from \mathcal{K} to $\overline{A_\eta \mathcal{K}}$.

Since $\prod_{j \in \eta} (I - \mathcal{H}_j) \prod_{j \in \eta} \mathcal{H}_j \leq \prod_{j \in \eta} (\mathcal{H}_j^+ - \mathcal{H}_j) \prod_{j \in \eta} \mathcal{H}_j$, there is a contraction $B_\eta \in \mathcal{L}(\mathcal{K})$ commuting with R_η such that

$$\prod_{j \in \eta} (I - \mathcal{H}_j) \prod_{j \in \eta} \mathcal{H}_j = A_\eta B_\eta A_\eta.$$

Since $F_j \mathcal{H}_j = 0$, we have

$$\prod_{j \in \eta} F_j \prod_{j \in \eta} \mathcal{H}_j = \prod_{j \in \eta} (I - \mathcal{H}_j) \prod_{j \in \eta} \mathcal{H}_j = A_\eta (\prod_{j \in \eta} F_j B_\eta) A_\eta.$$

Denote $V_\eta = (\prod_{j \in \eta} Q_j B_\eta)^{1/2}$. Let \mathcal{K}_η be the smallest subspace of \mathcal{K} which contains $R_\eta \mathcal{K}$ as a subspace and is reducible with respect to \mathcal{K}. Denote $M_\eta = \overline{V_\eta \mathcal{K}_\eta}$ and $\xi = \{1, 2, \ldots, n\} - \eta$. If $\xi \neq \emptyset$, since M_η is reducible with respect to \mathcal{K}_j, $j \in \xi$, there exist a singular measure ν_ξ on T^ξ, a projection-valued measurable function $R_\xi(\cdot)$ on T^ξ and a unitary operator \mathcal{V}_η from M_η onto $\mathcal{B}^\eta = L^2(\Omega^\xi, \mathcal{B}^\xi, R^\xi)$, where $\Omega^\xi = (T^\xi, \mathcal{B}^\xi, m^\xi + \nu_\xi)$, such that

$$\mathcal{V}_\eta \mathcal{H}_j \mathcal{V}_\eta^{-1} f(z) = z_j f(z), \ z \in T^\xi$$

for $j \in \xi$. If $\xi \neq \emptyset$, denote $\mu_\eta = m_\eta \times (m^\xi + \nu_\xi)$. If $\xi \neq \emptyset$, let $\mu_\eta = m$, $\mathcal{B}^\eta = M_\eta$ and $\mathcal{V}_\eta = I$.

Define an operator W_η from \mathcal{K}_η onto a subspace
\(\mathcal{N} \subset L^2(\Omega_\eta, \mu_\eta) \) as follows:
\[
W_{\eta} \cdot \mathcal{U}_{\eta}^{m_1 \ldots m_n x} = z_1 \cdots z_n \cdot \sum_{k_j=0}^{\infty} \prod_{j \in \eta} \mathcal{U}_j^{k_j x},
\]
for \(x \in R_\eta \). From (2), it follows that
\[
R_\eta = \prod_{j \in \eta} (\omega_j^+ - \omega_j^-) B_\eta = \prod_{j \in \eta} (\mathbb{P}_j^+ + \mathbb{P}_j^-) B_\eta.
\]
The operator \(W_\eta \) is unitary from \(\mathcal{N}_\eta \) to \(\hat{\mathcal{N}}_\eta \), since (15) and
\[
(W_{\eta} \mathcal{U}_{\eta}^{m_1 \ldots m_n x} , W_{\eta} \mathcal{U}_{\eta}^{m_1' \ldots m_n' y})
= \sum_{k_j=0}^{\infty} (\mathcal{V}_j \prod_{j \in \eta} \mathcal{U}_j^{k_j x} , \mathcal{V}_j \prod_{j \in \eta} \mathcal{U}_j^{k_j y})
= (\prod_{j \in \eta} \mathcal{U}_j^{m_j x} , \prod_{j \in \eta} \mathcal{U}_j^{m_j y}) = (\prod_{j \in \eta} \mathcal{U}_j^{m_j x} , \prod_{j \in \eta} \mathcal{U}_j^{m_j y}).
\]
Similarly,
\[
W_{\eta} (\prod_{j \in \eta} \mathbb{P}_j^+ B_\eta) W_{\eta}^{-1} = \varphi_{\eta} \big|_{\hat{\mathcal{N}}_{\eta}},
\]
and
\[
W_{\eta} \mathcal{U}_j W_{\eta}^{-1} = \hat{\mathcal{U}}_j \big|_{\hat{\mathcal{N}}_{\eta}},
\]
where \(\hat{\mathcal{U}}_j \big|_{\hat{\mathcal{N}}_{\eta}} \) is the corresponding \(\hat{\mathcal{U}}_j \) in \(\hat{\mathcal{N}}_{\eta} \). This means \(\hat{\mathcal{U}}_j \big|_{\hat{\mathcal{N}}_{\eta}} f(z) = z_j f(z) \), and \(\hat{\mathcal{N}}_{\eta} \) is invariant with respect to \(\hat{\mathcal{U}}_j \).

The operator \(W_{\eta} \) extends to a unitary operator, which is still denoted by \(W_{\eta} \), from \(\mathcal{N}_\eta \) to \(\hat{\mathcal{N}}_{\eta} = L^2(\Omega_\eta, \mu_\eta, \nu_\eta) \), where
\[
\Omega_\eta = (\mathbb{T}_\eta, \mathcal{B}_\eta, \mu_\eta, \nu_\eta), \quad \mu_\eta = m + \nu_\eta, \quad \nu_\eta \text{ is a singular measure such that}
\]
\[
W_{\eta} \mathcal{U}_j W_{\eta}^{-1} = \hat{\mathcal{U}}_j. \quad \tag{17}
\]
Since \(A_\eta \) commutes \(\mathcal{U}_j \), \(W_{\eta} A_{\eta} W_{\eta}^{-1} \) is a multiplication operator
\[
(W_{\eta} A_{\eta} W_{\eta}^{-1} f)(\cdot) = \beta_{\eta}(\cdot) f(\cdot) \quad \tag{18}
\]
where \(\beta_{\eta}(\cdot) \) is a bounded measurable \(\mathcal{L}(\mathbb{T}_\eta) \)-valued function satisfying \(\beta_{\eta}(\cdot) \geq 0 \). From (14), (16) and (18), it follows that
\[W_{\eta}(\prod_{j \in \eta} \mathcal{F}_j \prod_{j \notin \eta} \mathcal{J}_j A)W_{\eta}^{-1} = \beta_{\eta} \Theta_{\eta} \theta_{\eta}. \]

(19)

For \(\eta = \emptyset \), (18) still holds, where \(\Theta_{\emptyset} = I \).

Hitherto, for simplicity, \(W_{\emptyset} \) and \(\Theta_{\emptyset} \) are denoted by \(W \) and \(\Theta \), respectively. Since \(W_{\eta}W_{\eta}^{-1} \) is a unitary operator from \(\hat{\mathcal{H}}_{\eta} \) to \(\hat{\mathcal{U}}_{\eta} \) and

\[\frac{\hat{\mathcal{U}}_{\eta}}{W_{\eta}W_{\eta}^{-1}} = W_{\eta}W_{\eta}^{-1} \frac{\hat{\mathcal{U}}_{\eta}}{W_{\eta}}. \]

(20)

There exists a measurable function \(Z_{\eta}(\cdot) \), whose value is unitary operators from \(R(\cdot) \) to \(R_{\eta}(\cdot) \) such that

\[(W_{\eta}W_{\eta}^{-1}f)(\cdot) = Z_{\eta}(\cdot)f(\cdot). \]

(21)

Combining (19) and (20), we have

\[W(\prod_{j \in \eta} \mathcal{F}_j \prod_{j \notin \eta} \mathcal{J}_j A)W_{\eta}^{-1} = \alpha_{\eta}^* \varphi_{\eta} \alpha_{\eta} \]

where \(\alpha_{\eta}(\cdot) = \beta_{\eta}(\cdot)Z_{\eta}(\cdot) \). Thus (12-13) follows from (17), (20) and (22). The theorem is proved.

From Theorem 1, the set of self-adjoint operators

\[R(\cdot) \varphi_{\eta} R(\cdot), \ \eta \in S_n, \]

is a basis of \(SH(\hat{\mathcal{H}}) \).

§4. SPECTRUM.

If \(A \in SH(\hat{\mathcal{H}}) \), then the operator

\[A_k = \prod_{j=1}^{n} (k_j \mathcal{J}_j + (1-k_j) \mathcal{F}_j)A \]

is called a general polar-symbol of \(A \) with respect to \(\mathcal{H} \) corresponding to \(k = (k_1, \ldots, k_n) \in [0,1]^n \). It is obvious that \(A_k \in \mathcal{H}' \). If \(A \) is the singular integral model, then \(A_k \) is a multiplication operator

\[(A_k f)(\cdot) = \sum_{\eta \in S_n} \prod_{j \in \eta} k_j \alpha_{\eta}^*(\cdot) \alpha_{\eta}(\cdot)f(\cdot). \]

Hitherto, the \(\mathcal{L}(\varphi) \)-valued function \(\sum_{\eta \in S_n} \sum_{j \in \eta} k_j \alpha_{\eta}^*(\cdot) \alpha_{\eta}(\cdot) \) is denoted by \(A_k(\cdot) \).

Let \(\sigma_{j\alpha}(A_k) \) be the joint approximated point spectrum of the commuting \((n+1)\)-tuple \((\mathcal{H},A_k) \), i.e., the set of all points \((z_1, z_2, \ldots, z_n, \rho) \in \mathbb{T}^n \times [0, \infty) \) for which there exists
a sequence of unit vectors $\{f_m\} \subset \mathcal{X}$ such that
\[
\lim_{m \to \infty} \|\mathcal{U}_j z_j I f_m\| = 0, \quad j = 1, 2, \ldots, n
\] (23)
and
\[
\lim_{m \to \infty} \|A_k \rho I f_m\| = 0.
\]
This $\sigma_{ja}(\mathcal{U}, A_k)$ is the Taylor spectrum [6],[15] of the $(n+1)$-tuple (\mathcal{U}, A_k).

Since \mathcal{U} is a commuting n-tuple of unitary operators, its joint spectrum $\sigma(\mathcal{U})$ is in T^n. Let $E(\cdot)$ be the spectral measure of the n-tuple \mathcal{U}. For $z = (z_1, \ldots, z_n) \in \sigma(\mathcal{U})$, the set of all products $\Delta = \gamma_1 \times \cdots \times \gamma_n$ of open arcs $\gamma_j \subset T$, containing z_j, $j = 1, 2, \ldots, n$ is denoted by $\Gamma(z)$. For $A \in \mathcal{SH}(\mathcal{U})$, the set
\[
\sigma(\mathcal{U}, A) = \{(z, \rho) : z \in \sigma(\mathcal{U}), \rho \in \bigcap_{\Delta \in \Gamma(z)} E(\Delta) A E(\Delta)\}
\]
is called the joint spectrum of the $(n+1)$-tuple (\mathcal{U}, A). If $A \in \mathcal{U}'$, it is easy to see the joint spectrum of the $(n+1)$-tuple (\mathcal{U}, A) defined here coincides with the usual one [15].

Theorem 2. If $A \in \mathcal{SH}(\mathcal{U})$, then
\[
\sigma(\mathcal{U}, A) = \bigcup_{k \in [0, 1]} \sigma_{ja}(\mathcal{U}, A_k).
\] (24)

Proof. Without loss of generality, we may assume that A is the singular integral model (13) in Theorem 1 and \mathcal{U} is the n-tuple of multiplication operators (5) in \mathcal{X}. The spectral measure $E(\cdot)$ of \mathcal{U} is of the form
\[
(E(M)f)(\cdot) = l_M(\cdot)f(\cdot),
\]
where M is the Borel set in T^n, $l_M(\cdot)$ is the characteristic function of the set M.

Take any $(z_1, \ldots, z_n, \rho) \in \sigma_{ja}(\mathcal{U}, A_k)$ for certain $k = (k_1, \ldots, k_n) \in [0, 1]^n$, then there exists a sequence of unit vectors $\{f_m\} \in \mathcal{X}$ such that (23) and
\[
\lim_{n \to \infty} \|\sum_{\eta \in \eta} \Pi_{j \in \eta} k_j^{\alpha_j} \alpha_{\eta}^{*} - \rho f_m\| = 0
\]
hold. For $\Delta \in \Gamma(z_1, \ldots, z_n)$, denote
\[
\alpha_{\eta\Delta}(\cdot) = \alpha_{\eta}(\cdot) l_{\Delta}(\cdot)
\]
and
\[A_1 = \sum_{1 \leq n_1} \prod_{j \in \eta} k_j \alpha_{\eta_1}^* \alpha_{\eta_1} + \sum_{1 \leq n_1} \prod_{j \in \eta, j \neq 1} k_j \alpha_{\eta_1}^* \phi_1 \alpha_{\eta_1}. \]

Then \(\mathcal{U}_1 A_1 \) is a semi-hyponormal operator \([18],[19]\) and its polar-symbols with respect to \(\mathcal{U}_1 \) are
\[\mathcal{P}^+(\mathcal{U}_1 A_1) = \mathcal{U}_1 \sum_{1 \leq n_1} \prod_{j \in \eta} k_j \alpha_{\eta_1}^* \alpha_{\eta_1} \]
and
\[\mathcal{P}(\mathcal{U}_1 A_1) = \mathcal{U}_1 \sum_{1 \leq n_1} \prod_{j \in \eta, j \neq 1} k_j \alpha_{\eta_1}^* \alpha_{\eta_1}. \]

Thus \(k_1 \mathcal{P}^+(\mathcal{U}_1 A_1) + (1-k_1) \mathcal{P}(\mathcal{U}_1 A_1) = \mathcal{U}_1 A_k 1_\Delta \) and
\[z_1 \rho \in \sigma(\mathcal{U}_1 A_k 1_\Delta). \]
From \([19]\), we know that \(\sigma(k_1 \mathcal{P}^+(\mathcal{U}_1 A_1) + (1-k_1) \mathcal{P}(\mathcal{U}_1 A_1)) \subset \sigma(\mathcal{U}_1 A_1) \). Therefore
\[z_1 \rho \in \sigma(\mathcal{U}_1 A_1). \]
From the projection property of the \(\sigma(\mathcal{U}_1 A_1) \), it follows that
\[\rho \in \sigma(A_1). \]
Since \(\mathcal{U}_2 A_1 \) is normal there is a \(z' \in \sigma(\mathcal{U}_2) \) such that
\[\rho z_2' \in \sigma(\mathcal{U}_2 A_2). \]
Define
\[A_2 = \sum_{1 \leq n_2} \prod_{j \in \eta} k_j \alpha_{\eta_2}^* \alpha_{\eta_2} + \sum_{1 \leq n_2} \prod_{j \in \eta, j \neq 2} k_j \alpha_{\eta_2}^* \phi_2 \alpha_{\eta_2} \]
+ \[\sum_{1 \leq n_2, 2 \leq n_2} \prod_{j \in \eta} k_j \alpha_{\eta_2}^* \phi_1 \alpha_{\eta_2} + \sum_{1 \leq n_2, 2 \leq n_2} \prod_{j \in \eta, j \neq 1} k_j \alpha_{\eta_2}^* \phi_1 \alpha_{\eta_2} \].
Then by calculation it is easy to show that
\[k_2 \mathcal{P}^+ A_2 + (1-k_2) \mathcal{P} A_2 = \mathcal{U}_2 A_1. \]
Thus \(\rho z_2' \in \sigma(\mathcal{U}_2 A_2) \) and \(\rho \in \sigma(A_2) \). By this procedure, we can prove that
\[\rho \in \sigma(\mathcal{E}(\Delta)\mathcal{A}(\Delta)). \]
Thus \((z_1, \cdots, z_n, \rho) \in \sigma(\mathcal{U}, \mathcal{A}). \)

Next, if \((z_1, \cdots, z_n, \rho) \in \sigma(\mathcal{U}, \mathcal{A}), \) let \(A_\Delta = \mathcal{E}(\Delta)\mathcal{A}(\Delta), \) where \(\Delta \in \Gamma(z), \) then \(\rho \in \sigma(A_\Delta). \) Since \(\mathcal{U}_n A_\Delta \) is semi-
hyponormal, from [19], there is a \(k_n \in [0,1] \) such that

\[
\rho_{z_n} \in (\mathcal{U}_n A_n),
\]

where

\[
A_n = \sum_{n \in \mathbb{N}} \eta_n \eta_n^* \sum_{j \in \mathbb{N}} \eta_j \eta_j^* + k_n \sum_{n \in \mathbb{N}} \eta_n \eta_n^* \sum_{j \neq n} \eta_j \eta_j^*
\]

is a linear combination of the polar-symbols of \(\mathcal{U}_n A \) with coefficients \(k_n \) and \((1-k_n) \). Thus \(\rho \in \sigma(A_n) \). By the same procedure, we can prove that there is a \(k^\Delta = (k_1, \ldots, k_n) \in [0,1]^n \)

such that

\[
\rho \in \sigma(E(\Delta)A_k^\Delta E(\Delta)).
\]

Let \(\{\Delta_m\} \) be a sequence in \(\Gamma(z) \) such that \(\bigcap_{m} \Delta_m = \{z\}, \]

\(\text{diam}(\Delta_m) \to 0 \) and \(k_m \to k^0 \in [0,1] \). There is a sequence of unit vectors \(\{f_m\} \subset E(\Delta_m)_\mathcal{E} \) such that

\[
\| (A_{\Delta_m} - \rho)f_m \| < \frac{1}{m}.
\]

Thus \(\| (A_{\Delta_m} - \rho)f_m \| \to 0 \) and \(\| (\mathcal{U} - z_j I)\rho_m \| \to 0 \). Hence

\[
(z_1, \ldots, z_n, \rho) \in \sigma_j (\mathcal{U}_n A_{k_0}^j) \text{ and } (24) \text{ is proved.}
\]

§5. TRACE FORMULA

Let \(\mathcal{J} = \{ k = (k_1, \ldots, k_n) : k_j = 0 \text{ or } 1, j = 1,2,\ldots,n \} \).

Denote \(\| (k_1, \ldots, k_n) \| = \sum_{j=1}^n k_j \). If \(E \) is a closed set in \(\mathcal{T} \), let \(M(E) \) be the set of all functions \(\varphi(\cdot) \) on \(E \) satisfying the following conditions, \(\varphi(z) \in \mathcal{T} \) for \(z \in E \) and \(\varphi(z) \) varies clockwise if \(z \) varies clockwise. Denote

\[
q_{\varphi_j}(\mathcal{T}) = \mathcal{T} - \varphi_j(\mathcal{U}_j) T \varphi_j(\mathcal{U}_j)^{-1}, \quad j = 1,2,\ldots,n,
\]

where \(\varphi_j \in M(\sigma(\mathcal{U}_j)) \).

THEOREM 3. If \(A \in \text{SH}(\mathcal{U}), \varphi_j \in M(\sigma(\mathcal{U}_j)), j = 1,2,\ldots,n, \)

\(\mathcal{G}(\cdot) \geq 0 \) is a continuous function on \(\sigma(A) \) such that

\[
\mathcal{G}(A) \in \text{SH}(\varphi_1(\mathcal{U}_1), \ldots, \varphi_n(\mathcal{U}_n)) \text{ and }
\]

\[
\int_{\mathcal{T}^n} \int_{\mathcal{J}} \mathcal{G}(A_{k}(z)) \prod_{k \in \mathcal{J}} (\mathcal{T} - \varphi_j(\mathcal{U}_j)) \sum_{k \in \mathcal{J}} (-1)^{n-1} k \mathcal{G}(A_{k}(z)) \prod_{k \in \mathcal{J}} \mathcal{T} - \varphi_j(\mathcal{U}_j) \prod_{j=1}^n \mathcal{G}(\varphi_j(\mathcal{U}_j)) \prod_{k \in \mathcal{J}} \mathcal{T} - \varphi_j(\mathcal{U}_j)
\]

\[
< +\infty.
\]

Then

\[
\text{tr}(q_{\varphi_1}(\mathcal{T}) \cdots q_{\varphi_n}(\mathcal{T}) \mathcal{G}(A)) = \\
\int_{\mathcal{T}^n} \int_{\mathcal{J}} \mathcal{G}(A_{k}(z)) \prod_{k \in \mathcal{J}} (\mathcal{T} - \varphi_j(\mathcal{U}_j)) \sum_{k \in \mathcal{J}} (-1)^{n-1} k \mathcal{G}(A_{k}(z)) \prod_{k \in \mathcal{J}} \mathcal{T} - \varphi_j(\mathcal{U}_j) \prod_{j=1}^n \mathcal{G}(\varphi_j(\mathcal{U}_j)) \prod_{k \in \mathcal{J}} \mathcal{T} - \varphi_j(\mathcal{U}_j). \quad (25)
\]
Moreover, if in the singular integral model,
\[\int_{\mathcal{S}} (a_\eta a_\eta) dm(z) < +\infty, \text{ for all } \eta \in S_n - \{\varnothing\}, \]
then there is an integrable function \(G(z, \rho) \) on \(\sigma(\mathcal{U}, \mathcal{A}) \) such that
\[
\text{tr}(Q_1 \cdots Q_n \mathcal{S}(\mathcal{A})) = \int_{\mathcal{S}} \mathcal{S}'(\rho) \prod_{j=1}^{n} \varphi_j(z_j) z_j G(z, \rho) dm(z) d\rho.
\]

PROOF. We consider the singular integral model of \(\mathcal{A} \). For simplicity we prove this theorem in the case of \(n = 2 \) only, and for the general case it can be proved similarly. In this case,
\[
A = a_0^2 a_0 + a_1^2 a_1 + a_2^2 a_2 + a_3^2 a_3,
\]
where \(a_j, j = 0, 1, 2, 3 \) are \(\mathcal{L}(\mathcal{B}) \)-valued bounded measurable functions. Without loss of generality, we may suppose \(\nu(\cdot) = 0 \), \(R(\cdot) = I \) and \(\varphi_j(z_j) = z_j \). Let \(\mathcal{B} = L^2(T, \mathcal{B}^1) \), then \(\mathcal{X} = L^2(T, \mathcal{B}^1) \). The operator \(\mathcal{U}_1 \mathcal{S}(\mathcal{A}) \) is semi-hyponormal in \(L^2(T, \mathcal{B}^1) \). For \(e \in \mathcal{B}^1 \), \(e \neq 0 \), let \(P_e \) be the operator
\[
(P_e f)(z_1) = (f(z_1), e / \|e\|_\mathcal{B}^1) e, \text{ for } f \in L^2(T, \mathcal{B}^1).
\]
Let \(\mathcal{C}_1(\mathcal{U}_1) \) be the class of all operators \(B \in \mathcal{L}(\mathcal{X}) \), for which the series
\[
\Sigma(B f_n \otimes a, f_n \otimes b)
\]
converges whenever \(\{f_n\} \) is an orthonormal basis in \(L^2(T) \) and \(a, b \in \mathcal{B}^1 \). If \(B \in \mathcal{C}_1(\mathcal{U}_1) \), then (27) is independent on the choice of \(\{f_n\} \), and there is an operator in \(\mathcal{L}(\mathcal{B}^1) \), which is denoted by \(\text{tr}_{\mathcal{U}_1}(B) \), such that (27) equals \(\text{tr}_{\mathcal{U}_1}(B)a, b \) for every \(a, b \in \mathcal{B}^1 \). An operator \(B \in \mathcal{L}(\mathcal{X}) \) belongs to \(\mathcal{C}_1(\mathcal{U}_1) \) iff \(P_a B P_a \) is in the trace class for every \(a, b \in \mathcal{B}^1 \). If \(B \in \mathcal{C}_1(\mathcal{U}_1) \), then
\[
\text{tr}_{\mathcal{U}_1}(B) = \text{tr}(P_a B P_a), \text{ for all } a, b \in \mathcal{B}^1.
\]
If we consider \(\mathcal{U}_2 \) as an operator in \(\mathcal{B}^1 \), then
\[
Q_2 B \in \mathcal{C}_1(\mathcal{U}_1) \text{ and } Q_1 \text{tr}_{\mathcal{U}_1}(Q_2 B) = Q_2 \text{tr}_{\mathcal{U}_1}(B)
\]
for \(B \in \mathcal{C}_1(\mathcal{U}_1) \). Since \(P_a \) commutes \(\mathcal{U}_1 \), \(\mathcal{U}_1 P_a \mathcal{S}(\mathcal{A}) P_a \) is semi-hyponormal and the difference of the polar symbols of \(P_a \mathcal{S}(\mathcal{A}) P_a \)
is $P_a(\xi(A_1)-\xi(A_0))P_a$, where $A_0 = a_0^*a_0 + a_1^*a_1$ and

$$A_1 = a_0^*a_0 + a_1^*a_1 + a_2^*a_2 + a_3^*a_3.$$

By the trace formula [13] of semi-hyponormal operators, it is easy to see that $P_a(Q_1\xi(A))P_a = Q_1(P_a\xi(A)P_a)$ is in the trace class and

$$\text{tr}(P_a(Q_1\xi(A))P_a) = \int_T ((\xi(A_1(z_{1}))-\xi(A_0(z_{1}))))a_{1}a_{1}dm(z_{1}).$$

Thus $Q_1\xi(A) \in C_1(\mathcal{U}_1)$,

$$\text{tr}_{\mathcal{U}_1} (Q_1\xi(A)) = \int_T (\xi(A_1(z_{1}))-\xi(A_0(z_{1})))dm(z_{1})$$

and then

$$Q_1Q_2\xi(A) = Q_2Q_1\xi(A) \in C_1(\mathcal{U}_1),$$

$$\text{tr}_{\mathcal{U}_1} (Q_1Q_2\xi(A)) = \int_T (Q_2\xi(A_1(z_{1}))-Q_2\xi(A_0(z_{1})))dm(z_{1}). \quad (28)$$

But $\mathcal{U}_2Q_2\xi(A_1(z_{1}))$ and $\mathcal{U}_2Q_2\xi(A_0(z_{1}))$ are semi-hyponormal operators in \mathcal{B}. Therefore, from [13], it follows that

$$\text{tr}_{\mathcal{B}_1} (Q_2\xi(A_1(z_{1}))) = \int_T \text{tr}_B \xi(A_1(z_{1},z_{2}))-\xi(A_1(z_{1},z_{2}))\text{dm}(z_{2}) \quad (29)$$

$$\text{tr}_{\mathcal{B}_1} (Q_2\xi(A_0(z_{1}))) = \int_T \text{tr}_B \xi(A_0(z_{1},z_{2}))-\xi(A_0(z_{1},z_{2}))\text{dm}(z_{2}). \quad (30)$$

From (28), (29) and (30) it follows that

$$\text{tr}_{\mathcal{B}_1} \text{tr}_{\mathcal{U}_1} (Q_1Q_2\xi(A))$$

$$= \int_T \int_T (\prod_{k \in J} (-1)^k |k| \xi(A_k(z_{1},z_{2})))\text{dm}(z_{1})\text{dm}(z_{2}). \quad (31)$$

Since $Q_1Q_2\xi(A) \geq 0$, the fact $\text{tr}_{\mathcal{B}_1} \text{tr}_{\mathcal{U}_1} (Q_1Q_2\xi(A)) < +\infty$ implies that $Q_1Q_2\xi(A)$ is in the trace class and

$$\text{tr}(Q_1Q_2\xi(A)) = \text{tr}_{\mathcal{B}_1} \text{tr}_{\mathcal{U}_1} (Q_1Q_2\xi(A)). \quad (32)$$

By (31) and (32), (25) is proved.

From the theory of nearly normal operators [2],[13], we know that if $\alpha \in \mathcal{L}(\mathcal{B})$, $\text{tr}_{\mathcal{B}}(\alpha^*\alpha) < +\infty$, $\beta \in \mathcal{L}(\mathcal{B})$, $\beta \geq 0$, and

$$E = \bigcup_{0 \leq k \leq l} \sigma(\beta+k\alpha^*\alpha)$$

then there is a nonnegative integrable function on E such that
\[\text{tr}_B[\xi(\beta + \gamma + \lambda) - \xi(\beta)] = \int_E \xi'(\rho)G(\rho)\,d\rho \]

for any monotonic continuous function \(\xi \) on \(E \) such that \(\xi(\beta + \gamma + \lambda) - \xi(\beta) \geq 0 \).

Thus for \(k_1 = 0,1 \) and \(z \in \sigma(\mathcal{U}) \) there are functions \(G_{k_1}(z,\rho) \geq 0 \) of \(\rho \) in \(E_{k_1}(z) = \bigcup_{0 \leq k_2 \leq 1} \sigma(\alpha^*_0 + k_1 \alpha^*_1 + k_2 \alpha^*_2 + k_1^2 \alpha^*_3) \) such that

\[\text{tr}[\xi(\alpha^*_0 + k_1 \alpha^*_1 + k_2 \alpha^*_2 + k_1^2 \alpha^*_3) - \xi(\alpha^*_0 + k_1 \alpha^*_1)] = \int_{E_{k_1}}(z) \xi'(\rho)G_{k_1}(z,\rho)\,d\rho. \quad (33) \]

From (24), \(E_{k_1}(z) \subseteq \{ \rho : (z,\rho) \in \sigma(\mathcal{U},A) \} \). Let

\[G(z,\rho) = G_0(z,\rho) + G_1(z,\rho), \quad (34) \]

then (26) follows from (25), (33) and (34) which proves theorem 3.

The function \(G(z,\rho) \) is a generalization of Pincus principal function (cf. [2],[13]).

Let \(B \) be a self-adjoint operator in \(L^2(\mathbb{T}^n,\mathcal{B}) \). If the series

\[\sum_{k,l} (Bf_k \otimes e_l, f_k \otimes e_l) \]

converges for any orthonormal basis \(\{e_j\} \) in \(\mathcal{B} \) and orthonormal basis \(\{f_k\} \) in \(L^2(\mathbb{T}) \) and its sum does not depend on the proper choice of the basis \(\{e_j\} \) and the basis \(\{f_k\} \) in \(L^2(\mathbb{T}) \), then this sum is defined to be the generalized trace of \(B \) and is denoted by \(\text{gtr}(B) \). It is obvious that if \(B \) is in the trace class then \(\text{gtr}(B) = \text{tr}(B) \). The trace norm of an operator \(L \in \mathcal{L}(\mathcal{B}) \) is denoted by \(\|L\|_1 \).

By the same method in the proof of Theorem 3, we can prove the following theorem, in which the operator \(A \) is the singular integral model.

THEOREM 4. If \(A \in \text{SH}(\mathcal{U}) \), \(\varphi_j(\cdot) \) and its derivative are continuous function in \(\mathbb{T} \), \(|\varphi_j(\cdot)| = 1, j = 1,2,\ldots,n \), \(\xi(\cdot) \) is a continuous function on \(\sigma(A) \) and

\[
\int_{\mathbb{T}^n} \left| \varphi_j(z_j) \right| \| \sum_{k \in \mathcal{G}} (-1)^{k_j} \xi(A_k(z)) \|_1 \,dm(z) < +\infty.
\]
Then
\[
gtr(Q_{\varphi_1} \cdots Q_{\varphi_n} \xi(A)) = \sum_{k \in \mathcal{F}} (-1)^{n-|k|} \text{tr}_g \left(\sum_{j=1}^n \frac{\partial'(z_j)z_j}{\partial_j(z_j)} \right) g(A_k(z)) \text{d}m(z).
\]
Moreover, if \(\int \text{tr}_g (\alpha_\eta^* \eta) \text{d}m < +\infty \), for \(\eta \in S_n - \{\emptyset\} \) then there is an integrable function \(G(z, \rho) \) defined on \(\sigma(\mathcal{U}, A) \) such that
\[
gtr(Q_{\varphi_1} \cdots Q_{\varphi_n} \xi(A)) = \sum_{\sigma(\mathcal{U}, A)} \xi'(\rho) \prod_{j=1}^n \frac{\partial'_j(z_j)z_j}{\partial_j(z_j)} G(z, \rho) \text{d}m(z) \text{d}\rho
\]
provided that \(\xi'(\cdot) \) is continuous on an interval containing \(\sigma(A) \).

THEOREM 5. If \(A \in \text{SH}(\mathcal{U}) \), then
\[
\|Q_1 \cdots Q_n A\| \leq m(\sigma(\mathcal{U}, A)),
\]
where \(m \) is the product of the Haar measure on \(\mathbb{T}^n \) and the Lebesgue measure on \(\mathbb{R}^1 \).

PROOF. In the singular integral model
\[
(Q_1 \cdots Q_n A)(\cdot) = \alpha^* (\cdot) \int_{\mathbb{T}^n} \alpha(z) f(z) \text{d}m(z)
\]
where \(\alpha = \alpha_1, 2, \ldots, n \) in \((13)\). It is easy to show that
\[
\|Q_1 \cdots Q_n A\| \leq \int_{\mathbb{T}^n} \alpha(z) \alpha^*(z) \text{d}m(z).
\]
For fixed \(z' = (z_2, \ldots, z_n) \in \sigma(\mathcal{U}_2, \ldots, \mathcal{U}_n) \), consider the operator
\[
B(z') = \sum_{1 \in \eta} \alpha_\eta(\cdot, z')^* \alpha_\eta(\cdot, z') + \sum_{l \in \eta} \alpha_\eta(\cdot, z')^* \alpha_\eta(\cdot, z')
\]
In this case, \(\mathcal{U}_1 B(z') \) is semi-hyponormal. From \([13]\), it follows that
\[
\|Q_1 B(z')\| \leq \int_{\mathbb{T}^n} \alpha_1(z_1, z') \text{d}m(z_1).
\]
It is obvious that
\[
\int_{\mathbb{T}^n} \alpha_1(z_1, z')^* \alpha_1(z_1, z') \text{d}m(z_1) \| \leq \|Q_1 B(z')\|
\]
and
\[\sigma(\mathcal{U}_1 B) = \bigcup_{0 \leq k_1 \leq 1} \sigma \left(\sum_{l \in \mathbb{N}} \alpha_{\eta}(\cdot, z') \alpha_{\eta}(\cdot, z') \right) \]
\[+ k_1 \sum_{l \in \mathbb{N}} \alpha_{\eta}(\cdot, z') \alpha_{\eta}(\cdot, z') \]
\[= \left\{ \rho z_1 : (z_1, z', \rho) \in \bigcup_{k \in [0,1]} \sigma(A_k) \right\} . \]

Thus
\[\left\| \int_{\mathcal{T}_n} \alpha(z)^* \alpha(z) \, dm(z) \right\| \leq \int_{\mathcal{T}_n-1} \left(\int (\mathcal{U}_1 B(z')) \, dp \, dm(z_1) \right) \, dm(z') \]
\[\leq m(\sigma(\mathcal{U}_1 A)) . \quad (37) \]

From (36) and (37), it follows (35).

The inequality (35) is a generalization of the corresponding one for semi-hyponormal operator (cf. \cite{13},\cite{14},\cite{18}).

§6. HYPERSONAL TUPLE.

Now we consider the hyponormal case, give the definitions and results here, and omit the proofs.

Let \(X = (X_1, \ldots, X_n) \) be the commuting tuple of bounded self-adjoint operators in \(\mathcal{K} \). Denote
\[D_1 T = i[X_1, T] , \quad T \in \mathcal{L}(\mathcal{K}) , \]
where \([A,B]\) denotes the commutator \(AB-BA \). It is evident that
\[D_1 D_2 T = D_2 D_1 T . \]

If \(Y \in \mathcal{L}(\mathcal{K}) \) and
\[D_1 \cdots D_m Y \geq 0 \]
for all \(1 \leq j_1 < \cdots < j_m \leq n \), then \(Y \) is said to be in the class \(\text{HN}(X) \) and the \((n+1)\)-tuple \((X,Y) \) is said to be hyponormal. If \(Y \in \text{HN}(X) \) then \(X_1 + i Y, j = 1,2,\ldots,n \) are hyponormal operators.

If \(T \in \mathcal{L}(\mathcal{K}) \) and
\[\text{st-lim} \quad e^{itX_1} - e^{-itX_1} \quad t \to +\infty \]
exist then these operators are denoted by \(S_j^\pm T \) and are called the symbols \([1],[5] \), respectively. If \(Y \in \text{SH}(X) \), then for every \(k = (k_1, \ldots, k_n) \in [0,1]^n \) there exists
\[Y_k = \sum_{j=1}^n (k_j S_j^+ + (1-k_j) S_j^-) Y \]
which is called the general symbol [19] of Y with respect to X
and corresponding to k, and is denoted by Y_k.

For $\eta \in S_n\setminus \{\emptyset\}$, let R^n be the Cartesian product of
real lines R^1_j, $j \in \eta$, $L^2(R^n,\mathcal{B})$ be the space of all measurable
\mathcal{B}-valued square integrable functions on R^n. Denote the projection
from $L^2(R^n,\mathcal{B})$ to the Hardy space by P_{η}, i.e., for
$f \in L^2(R^n,\mathcal{B})$,
\[(P_{\eta}f)(x) = \text{st-lim}_{\varepsilon \to 0^+} \prod_{j \in \eta} \left(\frac{1}{2\pi i} \int_{R^1_j} \frac{1}{x_j - (s_j + i\varepsilon)} \right) f(s) ds,
\]
where $s \in R^n_j$ and ds is the Lebesgue measure in R^n.

Let M be a bounded closed set in $R^n = \{ x = (x_1, \ldots, x_n) : x_j \in R^1 \}$, \mathcal{B} be the σ-algebra of all Borel sets in M, m be
the Lebesgue measure in R^n, ν be a singular measure in M, $\mu = m + \nu$, $\Omega = (M, \mathcal{B}, \mu)$, \mathcal{H} be an auxiliary Hilbert space, $R(\cdot)$
be a projection-valued measurable function in Ω and $\hat{\mathcal{H}}$ be the
Hilbert space of all \mathcal{B}-value measurable function in Ω satisfying
\[
\|f\|^2 = \int_M \|f(x)\|^2_\mathcal{B} d\mu(x) < +\infty
\]
and
\[R(\cdot)f(\cdot) = f(\cdot).
\]

THEOREM 6. Let $X = (X_1, \ldots, X_n)$ be an abelian set of
bounded self-adjoint operators in \mathcal{H}, $Y \in \text{HN}(X)$. Then there
exist a space $\hat{\mathcal{H}}$, in which $M = \sigma(X)$, a set of bounded measurable
$L(\mathcal{B})$-valued functions $\{\alpha_{\eta}(\cdot) : \eta \in S_n\}$ satisfying
$\alpha_{\eta}(\cdot)R(\cdot) = \alpha_{\eta}(\cdot)$ and a unitary operator W from \mathcal{H} onto $\hat{\mathcal{H}}$
such that
\[(WX_j W^{-1} f)(x) = x_j f(x),
\]
and
\[WYW^{-1} = \sum_{\eta \in S_n} \alpha_{\eta}^* \eta_{\eta} \eta_{\eta}.
\]

The operator in (38) is called the singular integral
model of Y.

Let $E(\cdot)$ be the spectral measure of the n-tuple X.
For $x = (x_1, \ldots, x_n) \in \sigma(X)$, let $\Gamma(x)$ be all cubics in R^n
with center x. If $Y \in \text{HN}(X)$, then
The joint spectrum of the \((n+1)\)-tuple \((X,A)\).

THEOREM 7. If \(Y \in HN(X)\), then
\[
\sigma(X,Y) = \bigcup_{k \in [0,1]} \sigma_{ja}(X,Y_k),
\]
where \(Y_k\) is the general symbol of \(Y\) with respect to \(X\) and corresponding to \(k\).

If \(E\) is a bounded closed set in \(\mathbb{R}^l\), then the family of all continuous monotonic increasing functions on \(E\) is denoted by \(M(E)\). Let \(\varphi_j \in M(\sigma(X_j))\) and
\[
D_{\varphi_j} T = i[\varphi_j(X), T].
\]

In the following theorems, we consider the singular integral model only. In this case, the general symbol \(Y_k\) is a multiplication operator, i.e.,
\[
(Y_k f)(\cdot) = Y_k(\cdot) f(\cdot)
\]
where \(Y_k(\cdot) = \sum \prod_{j \in \eta} \alpha_{k_j}(\cdot) \alpha_{\eta}(\cdot)\), for \(k = (k_1, \ldots, k_j)\).

THEOREM 8. If \(Y \in HN(X)\), \(\varphi_j \in M(\sigma(X_j))\), \(j = 1, 2, \ldots, n\), \(\xi(\cdot) \geq 0\) is a continuous function on \(\sigma(Y)\) such that
\[
\xi(Y) \in HN(\varphi_1(X_1), \ldots, \varphi_n(X_n))
\]
and
\[
\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} tr\left(\sum_{k \in \xi} (-1)^{n-|k|} \xi(Y_k(x))\right) d\varphi_1(x_1) \cdots d\varphi_n(x_n) < +\infty.
\]

Then
\[
tr(D_{\varphi_1} \cdots D_{\varphi_n} \xi(Y)) = \frac{1}{n^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} tr\left(\sum_{k \in \xi} (-1)^{n-|k|} \xi(Y_k(x))\right) d\varphi_1(x_1) \cdots d\varphi_n(x_n).
\]

Moreover, if \(\int tr_2(\alpha_{k_j}^* \alpha_{k_j}) dx < +\infty\) for all \(k \in S_n - \{\varnothing\}\), then there is an integrable function \(G(x,y)\) on \(\sigma(X,Y)\) such that
\[
tr(D_{\varphi_1} \cdots D_{\varphi_n} \xi(Y)) = \frac{1}{n^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \xi'(y) \prod_{j=1}^{n} \varphi_j'(x_j) G(x,y) dx dy.
\]

The function \(G(x,y)\) is a generalization of Pincus.
principal function.

We can define similarly the generalized trace in this case.

THEOREM 9. If $Y \in HN(X)$, $\varphi_j(\cdot)$ and its derivative are continuous functions in an interval containing $\sigma(X_j)$, $\xi(\cdot)$ is a continuous function on $\sigma(Y)$ and

$$\int_{\mathbb{R}^n} \prod_{j=1}^n |\varphi_j'(x_j)| \sum_{k \in \mathcal{S}} (-1)^{|k|} |\xi(Z_k(x))| \, dx < +\infty.$$

Then

$$\text{gtr}(\prod_{j=1}^n \varphi_j(x_j)) = \int_{\mathbb{R}^n} \prod_{j=1}^n \varphi_j'(x_j) \text{tr}_B \sum_{k \in \mathcal{S}} (-1)^{|k|} \xi(Z_k(x)) \, dx.$$

Moreover, if $\int \text{tr}_B (a_k^* a_k) \, dx < +\infty$ for $\eta \in S_n - \{\emptyset\}$, then there is an integrable function $G(x,y)$ on $\sigma(X,Y)$ such that

$$\text{gtr}(\prod_{j=1}^n \varphi_j(x_j)) = \frac{1}{(2\pi)^n} \int_{\sigma(X,Y)} \int_{\mathbb{R}^n} \varphi_j'(x) G(x,y) \, dx \, dy,$$

provided that $\xi'(\cdot)$ is continuous in an interval containing $\sigma(Y)$.

THEOREM 10. If $Y \in SH(X)$, then

$$\|D_1 \cdots D_n Y\| \leq \frac{1}{(2\pi)^n} m(\sigma(X,Y)).$$

This is a generalization of Putnam's inequality of a hyponormal operator.

REFERENCES

5. Glancey, K.: Seminormal Operators. Lecture Notes in

Research Institute of Mathematics
Fudan University
Shanghai, China

Department of Mathematics
The University of Iowa
Iowa City, IA 52242

Submitted: January 24, 1983