关于亚正常算子的函数变换

夏道行 李绍宽
（复旦大学数学研究所）

设 \(\mathcal{H} \) 是复可测 Hilbert 空间，\(L^2(\mathcal{H}) \) 是 \(\mathcal{H} \) 中线性有界（有界自共轭算子）算子全体。设 \(X, Y \in L^0(\mathcal{H}) \), \(\varphi, \psi \) 分别为 \(\sigma(X) \), \(\sigma(Y) \) 上的有界 Baire 函数，作映照 \(\tau_{\varphi, \psi}: X + iY \mapsto \varphi(X) + i\psi(Y) \)。它又表示复平面的子集上的映照 \(\tau_{\varphi, \psi}: x + iy \mapsto \varphi(x) + i\psi(y) \)。这里 \(x, y \) 是实数。设 \(HN = \{ T \mid T \in L^2(\mathcal{H}), \quad D(T) = [T^*, \quad T^*] \geq 0 \} \) 为亚正常算子。在第二届全国泛函分析学术交流会上夏提出了如下问题：

(a) 当 \(\varphi, \psi \) 满足什么条件时，由 \(T \in HN \) 导出 \(\tau_{\varphi, \psi}(T) \in HN \)。

(b) 当 \(\varphi, \psi \) 为严格单调增加的连续函数时是否成立

\[
\sigma(\tau_{\varphi, \psi}(T)) = \tau_{\varphi, \psi}(\sigma(T)),
\]

(1) \]

\[
\|D(T)\| \leq \frac{1}{2\pi} \int \int_{\sigma(\tau_{\varphi, \psi}(T))} d\varphi^{-1}(y) \cdot d\psi^{-1}(y).
\]

(2)

显然由 Putnam 等式\(^{(0)}\), (1) 式可推出 (2) 式，本文部分地回答了上述问题。关于半亚正常算子情况将另行讨论。

设 \(E \) 为直线上的一个有界闭集，如果 \(K(\cdot, \cdot) \) 为 \(E \times E \) 上的积分核，记相应的 \(L^2(E) \) 中的积分算子为 \(K: f \mapsto \int_E K(x, \cdot) f(x) dx \)。设 \(\varphi, \psi \) 为 \(E \) 上有界 Baire 函数。作核 \(K_\varphi(x_1, x_2) = \frac{\varphi(x_1) - \varphi(x_2)}{x_1 - x_2} \)（规定 \(K_\varphi(x, x) = 0 \)）如果 \(K_\varphi \) 是 \(L^2(E) \) 中线性有界算子，且对一切 \(f \in L^2(E) \) \((K_\varphi f, f) \geq 0 \)。则记 \(\varphi \in S(E) \)。例如 \(\varphi(f) = f^\alpha (0 < \alpha < 1) \)，则 \(\varphi \in S([0, 1]) \)。

设 \(\varphi \) 是 \(E \) 上函数，且

\[
M_\varphi = \sup_{x_1, x_2 \in E} K\varphi(x_1, x_2) < \infty, \quad m_\varphi = \inf_{x_1, x_2 \in E} K\varphi(x_1, x_2) > 0,
\]

我们就称 \(\varphi \in L(E) \)。

定理 1 设 \(X + iY \in HN, \varphi \in S(\sigma(X)), \psi \in S(\sigma(Y)) \)，则

\[
\varphi(X) + i\psi(Y) \in HN.
\]

证明 我们不妨考察 \(X + iY \) 的奇异积分模型。类似于文献 [1, 2] 我们可设 \(\mathcal{H} = L^2(Q, \mathcal{D}, P(\cdot)) \)，这儿 \(Q = (\sigma(X), \mathcal{B}, \mu) \)，\(\mu = m + \nu \)，\(m \) 为 Lebesgue 测度，\(\nu \) 集合在 Lebesgue 集合 \(F = \sigma(x) \) 上，\(P(\cdot) \) 为 \((\sigma(X), \mathcal{B}, \mu) \) 上可测于 \(\mathcal{D} \) 中的投影算子的自共轭算子。不妨设 \(X: f(\cdot) \mapsto (\cdot) f(\cdot), f \in \mathcal{H} \)。而 \((Yf)(\cdot) = \beta(\cdot) f(\cdot) + \alpha(\cdot) P(\sigma f) \)。这儿 \(\sigma(\cdot) \)，

\[
\beta(\cdot) \}
\]

为直线上升可测一致有界自共轭算子值函数，而且 \(\beta(\cdot) \) 在 \(\sigma(X) \) 外为零，\(\alpha(\cdot) \) 在 \(\sigma(X) \) 外为零，它们与 \(P(\cdot) \) 可以交换。这是一 \((\rho(f))(\xi) = \lim_{\alpha \to 2\pi} \int f(x) \xi (x + i\alpha) dx \)。由此

本文 1979 年 12 月 4 日收到。

第 14 期 科学通报 625
容易计算出

\[
(i \varphi(X), Y)f, f) = \frac{1}{2\pi} \iint_{\mathbb{R}^2} K_p(x_1, x_2)(\sigma(x_1)f(x_1), \alpha(x_2)f(x_2))dx_1dx_2
\]

由于 \(\varphi \in S(E) \)，可知 \(i[\varphi(X), Y] \geq 0 \)，即 \(\varphi(X) + iY \in HN \)。

记 \(Y = -\varphi(X) \)，\(x_1 = Y \)，则 \(x_1 + iY \in HN \)。由 \(\phi \in S(\sigma(x_1)) \)，从上可知 \(\varphi(x_1) + iY \in HN \)，立即得到 \(\varphi(X) + i\varphi(Y) = i(\varphi(x_1) + iY) \in HN \)。

引理 1 设 \(T(t) \) 为 \([0, 1] \) 上连续的算子值函数，对一切 \(t \in [0, 1] \)，成立

\[
\sigma_\ell(T(t)) = \varphi_\ell(\sigma_\ell(T(t))), \quad (3)
\]

这儿 \(T = T(1) \)，\(\varphi_\ell(\lambda) = \lambda \)，而且 \(\varphi_\ell(\cdot) \) 为复平面上 \([0, 1] \) 的函数，当 \(\lambda \) 固定时，\(\varphi_\ell(\lambda) \) 为 \(t \) 的连续函数。则成立

\[
\sigma_\ell(T(t)) = \varphi_\ell(\sigma_\ell(T(t))),
\]

从而

\[
\sigma_\ell(T(0)) = \varphi_\ell(\sigma_\ell(T(t))), \quad \forall t \in [t_0, 1]. \quad (4)
\]

证明 我们只需证 \(\sigma_\ell(T(0)) = \varphi_\ell(\sigma_\ell(T(t))) \)。对 \(\lambda \in \sigma_\ell(T(t)) \)，令 \(E_1 = \{ t \mid \varphi_\ell(\lambda) \in \sigma_\ell(T(t)) \} \)，\(\forall \lambda \in [t_0, 1] \)。则 \(E_1 = (t_0, 1) \) 或 \([t_0, 1] \)。若 \(E_1 = (t_0, 1) \) 时，\(\varphi_\ell(\lambda) \in \sigma_\ell(T(t_0)) \)，由条件下可知 \(\varphi_\ell(\lambda) \in \sigma(\rho(T(t_0))) \)。由不连续算子是开集的 \(T(t) \) 及 \(\varphi(\lambda) \) 的连续性导出存在 \(\epsilon > 0 \)，当 \(|t - t_0| < \epsilon \) 时 \(\varphi_\ell(\lambda) \in \rho(T(t)) \)，这和 \(E_1 = (t_0, 1) \) 的定义矛盾。若 \(E_1 = [t_0, 1] \) 且 \(t_0 < 1 \) 则 \(\varphi_\ell(\lambda) \in \sigma_\ell(T(t_0)) \)，由同样的道理可以存在 \(\epsilon > 0 \)，当 \(|t - t_0| < \epsilon \) 时，\(\varphi_\ell(\lambda) \in \sigma_\ell(T(t_0)) \)，这又和 \(E_1 = (t_0, 1) \) 的定义矛盾。因此 \(E_1 = [0, 1] \) 从而 \(\varphi_\ell(\lambda) \in \sigma_\ell(T(0)) \)。反之若 \(\varphi(\lambda) \in \sigma_\ell(T(t_0)) \)。利用相同方法，我们作 \(E = \{ t \mid \varphi_\ell(\lambda) \in \sigma_\ell(T(t)), \forall \lambda \in [t_0, 1] \} \)。证明出 \(E = [0, 1] \)，即 \(\lambda \in \sigma_\ell(T(t)) \)。从而得证。

定理 2 \(X + iY \in HN \)，\(\varphi \) 为 \(\sigma(x) \) 上 1 对 1 的 Baire 函数，若 \(\varphi(x) + iY \in HN \)，则成立

\[
\sigma(\varphi(X) + iY) = \tau_\varphi(\sigma(X + iY)). \quad (5)
\]

证明 作 \(T(\ell) = [XI + \varphi(X)(1 - I)] + iY \)，易知 \(T(\ell) \) 为 \([0, 1] \) 上算子值的连续函数，而且 \(T(\ell) \) 都是亚正常算子，对亚正常算子 \(T = X + iY \)，\(z = x + iy \) 时

\[
(T - z)^n(T - z) = (X - x)^n + (Y - y)^n + i[X, Y], \quad i[X, Y] \geq 0,
\]

可知对 \(z + iy \in \sigma_\ell(T) \)，存在 \(f_n \in \mathcal{M} \)，\(\|f_n\| = 1, (n = 1, 2, \cdots) \)

\[
\|T - z\|f_n \rightarrow 0, \quad \|X - x\|f_n \rightarrow 0, \quad \|Y - y\|f_n \rightarrow 0.
\]

由此很容易证明

\[
\sigma_\ell(T(\ell)) = \varphi_\ell(\sigma_\ell(T)),
\]

这儿 \(\varphi_\ell(z + iy) = xt + \varphi(x)(1 - I) + iy \)。由引理 1 而得到

\[
\sigma(T(\ell)) = \varphi_\ell(\sigma(T)),
\]

取 \(\ell = 0 \) 即得 (5) 式。

定理 3 若 \(\sigma \) 和 \(\phi \) 为线性 1-1 的 Baire 函数，而且 \(\varphi \in S(\sigma(x)), \phi \in S(\sigma(y)) \)。则

\[
\hat{T} = \varphi(X) + i\varphi(Y) \in HN \quad (\text{满足(1),(2)式})
\]

证明由定理 1，定理 2 和 Putnam 不等式导出。

定理 4 \(T = X + iY \in HN \)。\(\phi \in L(\sigma(X)), \phi(x) = x, \) 则 \((1),(2) \) 式成立。

证明 不妨设 \(T \) 为完全非正的，从而 \(\sigma(T) \neq \phi \)。对 \(z = x + iy \)，\(\tau_{\phi}(T) = \hat{T}, \)

\[
\tau_{\phi}(x) = \bar{x}. \quad \text{那么} \quad (\hat{T} - \bar{x}) = (1 + B)(T - z). \quad \text{这儿} \quad B = [(\varphi(X) - X) - (\varphi(x) - x)]
\]

626 科学通报 1980 年

\((T - z)^{-1}\)。我们证明 \(B\) 为有界, 又设 \(M_{\phi} + m_{\phi} = 2\)。则 \(\|B\| < 1\)。为此设 \(X = \int \lambda dE_\lambda\) 为 \(X\)的谱分解, 对 \(f \in \mathcal{D}(B)\), 存在 \(g\),
\[
f = (T - z)g, \quad Bf = [(\varphi(X) - X) - (\varphi(x) - x)]g,
\]
由于 \(\|f\| = \|(T - z)g\| \geq \|(X - x)g\|\), 而
\[
\|Bf\|^2 = \int (\lambda - x)^2[K_{\phi}(\lambda, x) - 1]^2d(E_\lambda g)
\]
\[
\leq \delta^2\|f\|,
\]
这儿 \(\delta = \frac{M_{\phi} - m_{\phi}}{2} < 1\)。因此 \(\|B\| < 1\), 从而 \((I + B)\) 可逆。即(1)式成立。对一般情况, 我们取 \(K = \frac{2}{M_{\phi} + m_{\phi}}\), 作 \(\varphi_1(t) = \varphi(Kt)\)。记 \(T_1 = \frac{1}{K}X + iY\)。由定理 2 可知 \(\sigma(T_1) = \left\{ \frac{1}{K} x + iy | x + iy \in \sigma(T) \right\}\)。对 \(T_1\), \(\varphi_1\) 利用上述讨论可知 \(\sigma(T) = \tau_{\varphi_1\phi}(\sigma(T_1))\), 从而导出
\[
\sigma(T) = \tau_{\varphi_1\phi}(\sigma(T))\)。即(1)式也成立。(2)式由 Putnam 不等式导出。

再利用定理 1, 2 可得

定理 5 设 \(X + iY \in HN, \varphi \in S(\sigma(x)), \phi \in L(\sigma(Y))\), 则(1), (2)式成立。

参考文献