TRACE FORMULAS AND COMPLETELY UNITARY INVARIANTS FOR SOME k-TUPLES OF COMMUTING OPERATORS

DAOXING XIA

ABSTRACT. Let $A = (A_1, \ldots, A_k)$ be a k-tuple of commuting operators. Let A_1 be a pure subnormal operator with minimal normal extension N_1. Assume that $\text{sp}(A_1) \setminus \text{sp}(N_1)$ is a simply-connected domain with Jordan curve boundary satisfying certain smooth condition. Assume also that $[A_i^*, A_j] \in \mathcal{C}^1$, $i, j = 1, \ldots, k$. Then A is subnormal, and the set consisting of the $\text{sp}(A)$ and the function $Q(\lambda), \lambda \in \sigma_p(A^*)$ is a complete unitary invariant for A, where $Q(\lambda_1, \ldots, \lambda_k)$ is a parallel projection to $\ker(A_i^* - \lambda_i I) \cap \{f : (A_i^* - \lambda_i I)^{\ell}f = 0, \text{for some } \ell > 0, j = 2, \ldots, k\}$.

1. Introduction

Let \mathcal{H} be a Hilbert space. Let $\mathcal{L}(\mathcal{H})$ be the algebra of all linear operators on \mathcal{H} and let $\mathcal{L}^1(\mathcal{H})$ be the trace ideal of $\mathcal{L}(\mathcal{H})$. Carey and Pincus [4], [5], [12] established a theory on the principal current and local index of certain class of k-tuples of commuting operators $A = (A_1, \ldots, A_k)$ satisfying conditions that (i) $[A_i^*, A_j] \in \mathcal{C}^1$ and (ii) the joint essential spectrum is a system of curves in \mathbb{C}^n. The one current ℓ is defined by setting

$$\ell(f dh) = \text{itr} [f(A), h(A)]$$

for functions f, h in certain class. The ℓ is a real MC cycle in \mathbb{C}^n which is the boundary in the sense of currents in \mathbb{C}^n of a rectifiable current Γ, the so called principal current. With this Γ, they also defined the principal index for A at some points in the Taylor $\text{sp}(A)$. Therefore it is worth to determine the explicit form of the current ℓ for some class of operator-tuples.

1991 Mathematics Subject Classification. Primary 47B20.

This work supported in part by a NSF grant no. DMS-9400766.

This paper is in final form and no version of it will submitted for publication elsewhere.
A \(k \)-tuple \(S = (S_1, \ldots, S_k) \) of operators on \(\mathcal{H} \) is said to be subnormal ([7], [8], [13], [14], [15], [17]) if there is a \(k \)-tuple \(N = (N_1, \ldots, N_k) \) of commuting normal operators on a Hilbert space \(\mathcal{K} \supset \mathcal{H} \) such that

\[
N_j \mathcal{H} \subset \mathcal{H} \quad \text{and} \quad S_j = N_j|_{\mathcal{H}}, j = 1, 2, \ldots, k.
\]

This \(N \) is said to be a normal extension of \(S \). If there is no proper subspace \(\mathcal{H}_1 \subset \mathcal{K} \) satisfying conditions that \(\mathcal{H}_1 \perp \mathcal{H} \) and \(\mathcal{H}_1 \) reduces \(N_j, \quad j = 1, 2, \ldots, k \). Then \(N \) is said to be a m.n.e. (minimal normal extension) of \(S \).

Theorem A. (Pincus and Xia [13]). Let \(S = (S_1, \ldots, S_k) \) be a subnormal \(k \)-tuple of operators with minimal normal extension \(N \). If rank \([S_i^*, S_j] < +\infty \) for \(i = 1, 2, \ldots, k \), then

\[
\text{itr} [f(S), h(S)] = \frac{1}{2\pi} \int_L m_f dh
\]

where \(L \) is the union of a finite collection of closed curves, and is also the union of a finite collection of algebraic arcs such that \(\text{sp}(N) \) is the union of \(L \) and a finite set. Furthermore, \(m(u) \) is an integer valued multiplicity function which is constant on the irreducible piece of \(L \), and \(f, h \in A(\text{sp}(S)) \).

Here, the algebra \(A(\sigma) \) is the algebra of functions on \(\sigma \) generated by all the analytic functions \(f \) and their conjugates \(\overline{f} \) defined on a neighborhood of \(\sigma \).

Theorem B. (Pincus and Zheng [14]). Under the condition of Theorem A,

\[
\text{itr} [f(A), g(A)] = \frac{1}{2\pi} \sum_i \int_{C_j} m_j f dh
\]

where \(\{C_j\} \) are the collection of cycles in \(\text{sp}_{\text{ess}}(S) \) and the weights \(m_j \) are the spectral multiplicities of the m.n.e. \(N \) at any regular point \(\zeta \) of \(C_j \).

In Lemma 2 of this paper, we also get the form \(\ell(f dh) \) in Theorem B for the case of a \(k \)-tuple of \(A = (A_1, \ldots, A_k) \) of commuting operators satisfying the conditions that (i) \([A_i^*, A_j] \in L^1 \), \(i, j = 1, 2, \ldots, k \), and (ii) \(A_1 \) is a pure subnormal operator of which \(\text{sp}(N_1) \setminus \text{sp}(A_1) \) is a simply connected domain with Jorden curve boundary satisfying certain smooth condition, where \(N_1 \) is the m.n.e. of \(A_1 \).

The main part of this paper is studying a complete unitary invariant for certain operator tuples.

Let \(\mathcal{F} \) be a family of \(k \)-tuples \(A = (A_1, \ldots, A_k) \) of operators. Let \(CU(A) \) be a set of objects determined by \(A \in \mathcal{F} \). The object \(CU(A) \) is said to be a complete unitary invariant for the \(k \)-tuple \(A \) in \(\mathcal{F} \), if for \(A = (A_1, \ldots, A_k) \) and \(B = (B_1, \ldots, B_k) \) in \(\mathcal{F} \), \(CU(A) = CU(B) \) is a necessary and sufficient condition for the existence of a unitary operator \(U \) satisfying \(UA_jU^{-1} = B_j, \quad j = 1, 2, \ldots, k \).

Even in the case of single operator \((k = 1) \), to find a simpler useful complete unitary invariant is one of the basic problems in the operator theory. It is classical that the family of measures associated with the spectral resolution is
a complete unitary invariant for the normal operator (for example [11]), as well as the \(k\)-tuple of commuting normal operators. There are several directions in the theory of complete unitary invariants in the single operator case or \(k\)-tuple of commuting operators case, such as [3], [9], [10].

We are interested in finding some complete unitary invariants associated with some trace formulas or cyclic cohomology. It is well-known that the Pincus principal function is a complete unitary invariant for \(T\), if \(T\) is pure and rank \([T^*, T] = 1\). For the pure subnormal operator with m.n.e. \(N\), if \(\text{sp}(S) \setminus \text{sp}(N)\) is a simply connected domain with boundary \(\text{sp}(N)\) satisfying certain smooth condition and \([S^*, S] \in \mathcal{L}^1\) (in [19], [20] and [21], we assumed that \([S^*, S]^{1/2} \in \mathcal{L}^1\), but this restriction may be removed) then the principal function (index \((S^* - zI), z \in \rho_{\text{ess}}(S)\) is a complete unitary invariant for \(S\). A theorem of Abrahamse and Douglas [1] may be also interpreted in this way with different conditions.

If \(\text{sp}(S) \setminus \text{sp}(N)\) is not simply connected, then the principal function is no longer a complete unitary invariant. In [20] for some special case and then in [21] for the more general case, it proves that if \(S\) is a pure subnormal operator with m.n.e. \(N\) and satisfies conditions that (i) \(\text{sp}(S) \setminus \text{sp}(N)\) is a \(m\)-connected domain with boundary \(\text{sp}(N)\) consisting of \(m\) Jordan curves satisfying certain smooth condition or an external Jordan curve satisfying certain smooth condition and \(m - 1 \) points and (ii) \([S^*, S] \in \mathcal{L}^1\), then the function (which is related to cyclic cocycle)

\[
\text{tr} \left[(S^* - \lambda_1 I)^{-1}, (S - \mu_1 I)^{-1} \right]((S^* - \lambda_0 I)^{-1}, (S - \mu_0 I)^{-1}]
\]

\(\lambda_i, \mu_j \in \rho(S)\) is a complete unitary invariant for \(S\). In the Remark of §3, we will show that \(\text{tr} \left(Q(\lambda, S)Q(\mu, S), \lambda, \mu \in \text{sp}(S) \setminus \text{sp}(N) \right)\) is a complete unitary invariant for \(S\), where \(Q(\lambda, S)\) is a certain parallel projection to the eigenspace \(\text{ker}(S^* - \lambda I)\).

Assume that \(S = (S_1, \ldots, S_k)\) is a pure subnormal tuple of operators with m.n.e. \(N = (N_1, \ldots, N_k)\) satisfying \([S_j^*, S_j] \in \mathcal{L}^1, j = 1, 2, \ldots, k\). In [22] it is proved that if \(\text{sp}(S_j) \setminus \text{sp}(N_j)\) is a simply connected domain with Jordan curve boundary \(\text{sp}(N_j)\) satisfying certain smooth condition for \(j = 1, 2, \ldots, k\), then

\[
\text{tr} \left[f_0(A), g_0(A) \right] = \frac{1}{2\pi} \int_{\text{sp}(N)} m(u)f_0(u)dg_0(u)
\]

and

\[
\text{tr} \left[f_0(A), g_0(A) \right] \ldots [f_n(A), g_n(A)] =
\]

\[
\left[\frac{1}{(2\pi)^n+1} \int_{\text{sp}(N)^n+1} m(u^{(0)}, \ldots, u^{(n)}) \prod_{m=0}^n f_m(u^{(m)})(u^{(m)} - g_m(u^{(m-1)})) du_1^{(m)} \right]
\]

where \(u^{(j)} = (u_1^{(j)}, \ldots, u_k^{(j)}), u^{(-1)} = u^{(n)}\) for \(n \geq 1\) and \(f_j, g_j \in \mathcal{A}(\text{sp}(S))\). In [22], it is also proved that the sequence of functions \(m(u^{(0)}, \ldots, u^{(n)})\) (which are
related to cyclic n-cocyle), \(n = 0, 1, \ldots \) is a complete unitary invariant for \(S \).

In the present paper, we continue the study in [22]. We consider the class of \(k \)-tuples of commuting operators \(A = (A_1, \ldots, A_k) \) on \(\mathcal{H} \) satisfying the conditions that (i) \([A_j^*, A_j] \in \mathcal{L}_1, j = 1, 2, \ldots, k \) and (ii) \(A_1 \) is a pure subnormal operator with m.n.e \(N_1 \) such that \(\text{sp}(N_1) \) is a Jordan curve satisfying certain smooth condition. In Theorem 1, it proves that the operator tuples \(A \) satisfying these conditions are subnormal, and the set consisting of the Taylor spectrum \(\text{sp}(A) \) and the sequence of \(n \)-points function

\[
(3) \quad \text{tr} \left(Q(\lambda^{(1)}; A) \cdots Q(\lambda^{(n)}, A) \right), \lambda^{(n)} \in \sigma_p(A^*)^*
\]

(which is related to cyclic \(n \)-1-cocycle) is a complete unitary invariant for \(A \) where \(Q(\lambda; A) \) is the parallel projection to the subspace \(\ker(A_1^* - \bar{\lambda} I) \cap \{ f : (A_j^* - \bar{\lambda}_j I)^{\ell_j} f = 0, \ell_j > 0, j = 2, \cdots, k \} \). Or, the set consisting of the \(\text{sp}(A) \) and the function \(Q(\cdot; A) \) is a complete unitary invariant.

In §4 (cf. Corollary 1), we determine the form of the irreducible \(k \)-tuple of commuting operators \(H = (H_1, H_2, \cdots, H_k) \) satisfying the conditions that (i) \(\text{rank} [H^*_j, H_j] = 1 \), (ii) \([H^*_j, H_j] \) is compact, \(j = 2, \ldots, k \) and (iii) the pairs \((H_1, H_j), j = 2, \ldots, k \) are hyponormal. Under these conditions, either (i) \(H_1 \) is a linear combination of identity and unilateral shift with multiplicity one and \(\mathbb{H} \) is subnormal, or (ii) \(H_1 \) is a non-subnormal hyponormal operator and there are \(\alpha_j, \beta_j \in C \) such that \(H_j = \alpha_j H_1 + \beta_j I, j = 2, \cdots k \). This work is closely related to the Theorem 1 of [18].

2. A Lemma

Let \(H^p_D(\mathbb{T}), p \geq 1 \) be the Hardy space of \(D \)-valued analytic functions on the open unit disk with boundary function on \(\mathbb{T} \), where \(\mathbb{D} \) is an auxiliary Hilbert space. Let \(H^p(\mathbb{T}) = H^p_D(\mathbb{T}) \).

Lemma 1. Let \(T(\cdot) \in H^\infty_{L^1} D(\mathbb{T}) \). Let \(T \) be the operator

\[
(Tf)(\zeta) = T(\zeta)f(\zeta), \quad f \in H^2_D(\mathbb{T}).
\]

If \([T^*, T] \in \mathcal{L}_1 \), then \(T(\zeta) \) is a normal operator on \(\mathbb{D} \) for almost every \(\zeta \in \mathbb{T} \).

Proof. There is an orthonormal sequence \(\{h_j\} \) in \(H^2_D(\mathbb{T}) \) and a sequence of real numbers \(\{\lambda_j\} \), satisfying \(\sum |\lambda_j| < \infty \), such that

\[
(4) \quad ([T^*, T]f)(z) = \sum \lambda_j(f, h_j)h_j(z)
\]

for \(|z| < 1 \). In (4), let \(f(z) = \alpha(z - \lambda)^{-1}, \alpha \in \mathbb{D}, \ |\lambda| > 1 \), then (4) implies that

\[
(F(z) - F(\lambda))\alpha - T(z)(H(z) - H(\lambda))\alpha = (\lambda - z)\lambda^{-1} \sum \lambda_j(\alpha, h_j(\lambda^{-1}))h_j(z)
\]

for \(|z| < 1 \) where

\[
F(z) = \frac{1}{2\pi i} \int \frac{T^*(\zeta)T(\zeta)d\zeta}{\zeta - z}, \quad H(z) = \frac{1}{2\pi i} \int \frac{T(\zeta)^*d\zeta}{\zeta - z},
\]
since $T^*f = P(T^*(\cdot)f(\cdot))$ where P is the projection from L^2 to H^2.

For almost all $u \in T$, in (5) let $z \to u$ and $\lambda \to u$. Then

$$([T^*(u), T(u)]\alpha, \beta) = 0$$

for $\alpha, \beta \in D$ by Plemelj formula, since

$$\lim_{\lambda \to u} \sum \lambda_j(\alpha, h_j(\lambda^{-1}))(h_j(z), \beta) = \sum \lambda_j(\alpha, h_j(u))(h_j(u), \beta)$$

is finite for almost all $u \in T$.

3. Complete Unitary Invariant

For a k-tuple of operators $A = (A_1, \ldots, A_k)$, let $A^* = (A_1^*, \ldots, A_k^*)$ and $\sigma_p(A) = \{(\lambda_1, \ldots, \lambda_k) : \text{there is } f \neq 0 \text{ such that } A_jf = \lambda_jf\}$. For any set $\sigma \subset C^k$, let $\sigma^* = \{((\lambda_1, \ldots, \lambda_k) : (\lambda_1, \ldots, \lambda_k) \in \sigma\}$. Suppose $A = (A_1, \ldots, A_k)$ is a k-tuple of commuting operators on H, $\lambda = (\lambda_1, \ldots, \lambda_k) \in \sigma_p(A^*)^*$ and $\dim \ker(\lambda_1 - A_1^*) < +\infty$. Let $P_{D(\lambda_1)}$ be the orthonormal projection from H to $D(\lambda_1) = \ker (\lambda_1 I - A_1^*)$. Let

$$Q(\lambda; A) = \prod_{j=2}^k \frac{1}{2\pi i} \int_{|\zeta - \lambda_j| = \delta} (\zeta I - A_j^*)^{-1} d\zeta P_{D(\lambda_1)},$$

where δ is a positive number such that there is no eigenvalue of A_j^* in $0 < |\zeta - \lambda_j| \leq \delta$. Then $Q(\lambda; A)$ is a parallel projection from H onto $D(\lambda_1) = \ker (\lambda_1 I - A_1^*)$. Let

$$Q(\lambda(1); A) \ldots Q(\lambda(n); A), \quad \lambda^{(n)} \in \sigma_p(A^*)^*$$

is a complete unitary invariant for A.

A Jordan curve γ is said to satisfy the condition (CBI) if the univalent analytic mapping function $\phi(\cdot)$ from the interior domain of γ onto the open unit disk satisfying the condition that $\phi'(\cdot)$ and $\phi'(\cdot)^{-1}$ are bounded.

Theorem 1. Let $A = (A_1, \ldots, A_k)$ be a k-tuple of commuting operators on H. Assume that A_1 is a pure subnormal operator with minimal normal extension N_1 on $K \supset H$. Suppose $\text{sp}(N_1)$ is a Jordan curve satisfying condition (CBI) and is the boundary of $\text{sp}(A_1)$. Assume also that $[A_i^*, A_i] \in L^1$, $i = 1, \ldots, k$. Then A is subnormal, and the set consisting of the $\text{sp}(A)$ and the sequence of n-points function

$$\text{tr} (Q(\lambda^{(1)}; A) \ldots Q(\lambda^{(n)}; A)), \quad \lambda^{(n)} \in \sigma_p(A^*)^*$$

is a complete unitary invariant for A.

Or, the set consisting of the $\text{sp}(A)$ and the function $Q(\cdot; A)$ is a complete unitary invariant.

Proof. By the method in the proof of Theorem 3 in [19], where the condition $[A_i^*, A_i]^{1/2} \in L^1$ can be changed to $[A_i^*, A_i] \in L^1$, or by the Theorem 1 in [1], we may prove that there are a Hilbert space D and a unitary operator W from K onto $L^2_{\mathcal{D}}(T)$ such that $W^{*} = H^2_{\mathcal{D}}(T)$ and

$$(WN_{1}W^{-1}f)(z) = A_1(z)f(z), \quad f \in L^2_{\mathcal{D}}(T)$$
where the function $A_1(z)$ is the conformal mapping from the open unit D disk onto $\text{sp}(A_1) \setminus \text{sp}(N_1)$. For the simplicity of notation, we assume that $\mathcal{K} = \mathcal{L}_D(T)$, $\mathcal{H} = \mathcal{H}_D^2(T)$ and $W = I$.

Let U_+ be the unilateral shift, $(U_+ f)(z) = z f(z)$, $f \in \mathcal{H}_D^2(T)$. Then $A_1 = A_1(U_+)$. It is easy to see that

$$\text{index } (A_1^* - A_1(z)I) = \text{index } (U_+^* - zI), \text{ for } |z| < 1.$$

Since the mosaic (cf [16]) of A_1 is compact, we have

$$\text{index } (A_1^* - A_1(z)I) < +\infty, \text{ for } |z| < 1.$$

Therefore $\dim D = \text{index } (U_+ - zI) < +\infty$. There are functions $A_j(\cdot) \in \mathcal{H}_D^\infty(D(T))$ such that

$$(8) \quad (A_j f)(z) = A_j(z) f(z), \quad j = 2, \ldots, k.$$

By Lemma 1, $[A_j(z)^*, A_j(z)] = 0$ for a.e. $z \in T$. Define

$$(N_j f)(z) = A_j(z) f(z), \quad j = 2, \ldots, k, \quad f \in \mathcal{L}_D^2(T).$$

Then $N = (N_1, \ldots, N_k)$ is a normal extension of A on $L_2^2(T)$. Thus A is subnormal.

By the method of proving the Theorem 1 and the lemma 10 of [22], we may prove the following.

Lemma 2. Assume $A = (A_1, \ldots, A_k)$ satisfies the condition of this theorem and $f, g \in \mathcal{A}(\text{sp}(A))$. Then there is an integer valued measurable function $m(\cdot)$ which is the spectral multiplicity function of N at the regular points of $\text{sp}(N)$ such that

$$(9) \quad \text{tr } [f(A), g(A)] = \frac{1}{2\pi i} \int_{\text{sp}(N)} m(u) f(u) dg(u).$$

For $n \geq 1$, if $f_j, g_j \in \mathcal{A}(\text{sp}(A))$ then there exists bounded measurable function $m(u^{(0)}, \ldots, u^{(n)})$ on $\text{sp}(N)^{n+1}$ satisfying

$$(10) \quad \frac{1}{(2\pi i)^{n+1}} \int_{\text{sp}(N)^{n+1}} m_n(u^{(0)}, \ldots, u^{(n)}) \prod_{j=0}^n f_j(u^{(j)}) g_j(u^{(j)} - u^{(j-1)}) \frac{u^{(j)} - u^{(j-1)}}{u^{(j)} - u^{(j-1)}} du^{(j)}$$

where $u^{(j)} = (u_1^{(j)}, \ldots, u_k^{(j)})$, $u^{(-1)} = u^{(n)}$.

Furthermore, $\text{tr } [f_0(A), g_0(A)][f_1(A), g_1(A)] \ldots [f_n(A), g_n(A)]$ is also an integral expressed by functions $f_j, g_j, j = 0, \ldots, n$ and $m_n(u^{(0)}, \ldots, u^{(n)})$.

The integral in (10) is a multiple singular integral of Cauchy's type. Let $A_j(\zeta) = \sum \lambda_{jn}(\zeta) P_{jn}(\zeta)$ be the spectral resolution of the normal operator $A_j(\zeta)$,
\[\zeta \in T, \text{ where } \lambda_{j_m}(\zeta) \text{ and } P_{j_m}(\zeta) \text{ are eigenvalues and spectral projections of } A_j(\zeta) \text{ respectively. Then for almost all } (A_1(\zeta), \lambda_{2_m2}(\zeta), \ldots, \lambda_{km_k}(\zeta)) \in \text{sp}(\mathbb{N}), \text{ define} \]

\[P(A_1(\zeta), \ldots, \lambda_{km_k}(\zeta)) = P_{2m_2}(\zeta) \ldots P_{km_k}(\zeta). \]

Then

\[m_n(u^{(0)}, \ldots, u^{(n)}) = \text{tr} \left(P(u^{(0)}) \ldots P(u^{(n)}) \right). \]

By the method of proving Theorem 2 in [22], we may prove the following:

Lemma 3. Under the condition of the Theorem 1, \(\{\text{sp}(A), m_n, n = 0, 1, \ldots \} \) is a complete unitary invariant for the \(k \)-tuple \(A \) of operators.

Now, we only have to prove that the function (7) determines \(\{m, m_n : n = 1, 2, \ldots \} \).

For \(z_1 \in D \), let \(\lambda_1 = A_1(z_1) \) and \(\mathcal{D}(\lambda_1) = \ker(A_1^* - \bar{\lambda}_1 I). \) It is easy to see that

\[\mathcal{D}(\lambda_1) = \ker(U_+^* - \bar{z}_1 I) = \left\{ \frac{\alpha}{1 - \bar{z}_1(\cdot)} ; \alpha \in \mathcal{D} \right\} \]

is of finite dimension, since \(A_1 = A_1(U_+). \)

On the other hand

\[A_j^* \frac{\alpha}{1 - \bar{z}_1(\cdot)} = \frac{1}{2\pi i} \int \frac{A_j(\zeta)^* d\zeta}{(1 - \bar{z}_1(\zeta)(\zeta - (\cdot)))^\alpha} = A_j(z_1)^* \frac{\alpha}{1 - \bar{z}_1(\cdot)}. \]

Let \(W(z_1) \) be the operator from \(\mathcal{D}(\lambda_1) \) to \(\mathcal{D} \) defined by

\[W(z_1) \left(\frac{1 - |z_1|^2}{1 - \bar{z}_1(\cdot)} \right)^{1/2} = \alpha \]

Then \(W(z_1) \) is a unitary operator from \(\mathcal{D}(\lambda_1) \) onto \(\mathcal{D} \) and

\[W(z_1)A_j^*W(z_1)^{-1} = A_j(z_1)^*. \]

For \(\lambda = (\lambda_1, \ldots, \lambda_n) \), define an operator

\[E(\lambda) = \prod_{j=2}^{k} \frac{1}{2\pi i} \int_{|\zeta - \bar{\lambda}_j| = \delta} \left(\zeta I - A_j(z_1)^* \right)^{-1} d\zeta, \]

where \(\delta \) is a small positive number satisfying the condition that there is no eigenvalue of \(A_j(z_1)^* \) in \(\{\zeta \in \mathbb{C} : 0 < |\zeta - \bar{\lambda}_j| \leq \delta\} \). Then \(E(\lambda) \) is the parallel projection from \(\mathcal{D} \) to the intersection of root spaces

\[\{x \in \mathcal{D} : (A_j(z_1)^* - \bar{\lambda}_j I)^{\ell_j} x = 0, \text{ for some } \ell_j > 0, j = 2, \ldots, k\}. \]

Thus

\[Q(\lambda) = W(z_1)^{-1}E(\lambda)W(z_1)P_{\mathcal{D}(\lambda_1)} \]

where \(Q(\lambda) = Q(\lambda; A) \) and \(P_{\mathcal{D}(\lambda_1)} \) is the orthogonal projection from \(\mathcal{H}^2_2(T) \) to \(\mathcal{D}(\lambda_1) \).
LEMMA 4. Let $\lambda^{(j)} = (A_1(z^{(j)}), \lambda_2^{(j)}, \ldots, \lambda_k^{(j)})$, then

$$\text{tr} \left(Q(\lambda^{(m)}) \cdots Q(\lambda^{(1)}) \right) = \prod_{j=1}^{m} \frac{(1 - |z^{(j)}|^2)^{1/2}}{1 - |z^{(1)}|z^{(2)}} \text{tr}_{D}(E(\lambda^{(m)}) \cdots E(\lambda^{(1)}))$$

where $z^{(m+1)} = z^{(1)}$ and $z^{(j)} \in D$.

PROOF. Let $\{e_j\}$ be an orthonormal basis for D. It is easy to see that

$$P_{\mu^{(2)}} W(z^{(1)})^{-1} a = \left(1 - |z^{(1)}|^2\right)^{1/2} W(z^{(2)})^{-1} a, \ a \in D,$$

where $\mu^{(2)} = A_1(z^{(2)})$. Thus by (14) we have

$$\text{tr} \left(Q(\lambda^{(m)}) \cdots Q(\lambda^{(1)}) \right) = \sum_{j} (Q(\lambda^{(1)})W(z^{(1)})^{-1} e_j, Q(\lambda^{(2)}) \cdots Q(\lambda^{(m)}) W(z^{(1)})^{-1} e_j)$$

$$= \sum_{j} (Q(\lambda^{(2)})W(z^{(1)})^{-1} E(\lambda^{(1)}) e_j, Q(\lambda^{(3)}) \cdots Q(\lambda^{(m)}) W(z^{(1)})^{-1} e_j)$$

$$= \frac{(1 - |z^{(1)}|^2)^{1/2}}{1 - |z^{(1)}|z^{(2)}} \sum_{j} (Q(\lambda^{(3)}) W(z^{(2)})^{-1} E(\lambda^{(2)}) E(\lambda^{(1)}) e_j, Q(\lambda^{(4)}) \cdots Q(\lambda^{(m)}) W(z^{(1)})^{-1} e_j).$$

continuing this process, we may prove Lemma 4.

Let $B_n = (B_{1n}, \ldots, B_{mn}), n = 1, 2, \ldots$ be a sequence of m-tuples of commuting operators on a finite dimensional inner product space D satisfying $\lim_{n \to \infty} B_{jn} = B_j$, $j = 1, 2, \ldots, m$, where $B_j, j = 1, 2, \ldots, m$ are commuting normal operators with common eigenvalue 0. For every $\lambda = (\lambda_1, \ldots, \lambda_m)$, let

$$E_n(\lambda) = \prod_{j=1}^{m} \frac{1}{2\pi i} \int_{|\zeta - \lambda_j| \leq \delta} (\lambda_I - B_{jn})^{-1} d\lambda$$

be the parallel projection to $\{x \in D : (B_{jn} - \lambda_j I) e_{j'}x = 0, j' > 0, j = 1, \ldots, m\}$, where δ is a small positive number such that there is no eigenvalue of B_{jn} in $\{\zeta : 0 < |\zeta - \lambda_j| \leq \delta\}$. Let E be the orthogonal projection from D to $\bigcap_{j=1}^{m} \ker B_j$.

LEMMA 5. There is a $\epsilon > 0$ such that

$$\lim_{n \to \infty} \sum_{|\lambda_j| < \epsilon} E_n(\lambda_1, \ldots, \lambda_m) = E.$$

PROOF. Let ϵ be a positive number satisfying the conditions that (i) $\{\zeta \in C : 0 < |\zeta| < \epsilon\} \cap \sigma_p(B_j) = \emptyset$, $j = 1, \ldots, m$ and (ii) $\{\zeta \in C : |\zeta| = \epsilon\} \cap \sigma_p(B_{jn}) = \emptyset$, $j = 1, 2, \ldots, m; n = 1, 2, \ldots$.

It is obvious that this ϵ exists. It is easy to calculate that

$$\sum_{|\lambda_j| < \epsilon} E_n(\lambda_1, \ldots, \lambda_m) = \prod_{j=1}^{m} \frac{1}{2\pi i} \int_{|\zeta| = \epsilon} (\zeta I - B_{jn})^{-1} d\zeta.$$
Letting $n \to \infty$ in (16), we have

$$\lim_{n \to \infty} \sum_{|\lambda_j| < \epsilon} E_n(\lambda_1, \ldots, \lambda_m) = \prod_{j=1}^{m} \frac{1}{2\pi i} \int_{|\zeta| = \epsilon} (\zeta I - B_j)^{-1} d\zeta$$

which proves (18).

From Lemma 4 and 5, we obtain the following.

Lemma 6. Under the conditions of the Theorem 1, the function

$$m(u(0), u(1), \ldots, u(p)) = \lim_{\epsilon \to 0} \lim_{r \to 1^-} \prod_{j=0}^{p} \frac{(1 - r^2 z(j)) z(j+1)}{(1 - r^2)^{p+1}} \sum_{\eta^{(\epsilon)} \in V(\epsilon, r, u^{(\epsilon)})} \text{tr} (Q(\eta^{(0)}) \ldots Q(\eta^{(p)})).$$

where $z^{(j)} = A_1^{-1}(u^{(j)}_1), u^{(p+1)} = u^{(0)}$ and

$$V(\epsilon, r, u) = \{A_1(r A_1^{-1}(u_1)), \eta_2, \ldots, \eta_k) \in \sigma_p(A^*)^* : |\eta_j - u_j| < \epsilon, j = 2, \ldots, k\}.$$

From Lemma 3 and 6, it proves Theorem 1.

Remark. In [20] and [21], it studies the complete unitary invariant for the pure subnormal operator S on \mathcal{H} with the m.n.e. N on $\mathcal{K} \supset \mathcal{H}$ satisfying the conditions that (i) $\text{sp}(S) \setminus \text{sp}(N)$ is a k-connected domain with boundary $\text{sp}(N)$ consisting of k Jordan curves satisfying smooth condition (CBI) or an external Jordan curve satisfying smooth condition (CBI) and $k - 1$ points and (ii) $[S^*, S]^{1/2} \in \mathcal{L}^1$. We may make small changes in the proofs of the theorems in [20] and [21], such that the most argument in [20] and [21] remain true if we release the condition $[S^*, S]^{1/2} \in \mathcal{L}^1$ to $[S^*, S] \in \mathcal{L}$. Besides, it is easy to see that the function

$$\text{tr} (\mu(z)^* \mu(w)^*), \quad z, w \in \text{sp}(S) \setminus \text{sp}(N)$$

is a complete unitary invariant for this S, where

$$\mu(z)^* = P_M (N^* - zI)^{-1} (N^* - S^*) |_{M}$$

$M = \text{closure of } [S^*, S] \mathcal{H}$ and P_M is the projection from \mathcal{K} to M. By means of the analytic model of subnormal operator, we may prove that

$$\text{tr} (\mu(z)^* \mu(w)^*) = \text{tr} (Q(z; S)Q(w; S))$$

where $Q(z, S)$ is the parallel projection from \mathcal{H} to the eigenspace $\text{ker}(S^* - zI)$ satisfying the condition that

$$\text{ker} Q(z, S) = \text{ker} P_M (N^* - zI)^{-1} (N^* - S^*) P_M.$$

As a matter of fact,

$$Q(z, S) = [(N^* - zI)^{-1} (N^* - S^*) P_M]^2.$$
Therefore for this family of pure subnormal operators S satisfying the conditions (i) and $[S^*,S] \in \mathcal{L}^1$, the function
\[\text{tr} \left(Q(\lambda; S)Q(\mu; S) \right), \quad \lambda, \mu \in \text{sp}(S) \setminus \text{sp}(N) \]
is a complete unitary invariant for S.

4. Form of Some Hyponormal Tuples

A k-tuple of operators $A = (A_1, \ldots, A_k)$ on \mathcal{H} is said to be irreducible, if the only subspaces of \mathcal{H} reducing A_j, $j = 1, 2, \ldots, k$ are trivial.

Theorem 2. Let $\mathbb{H} = (H_1, \ldots, H_k)$ be an irreducible k-tuple of commuting operators on \mathcal{H}. (a) Suppose that H_1 is hyponormal, $\text{rank}[H_1^*, H_1] = 1$, $\text{ran}[H_1^*, H_1] \subset \text{ran}[H_j^*, H_j]$, and $[H_1^*, H_j]$ is compact, for $j = 2, \ldots, k$. Then either (i) H_1 is a linear combination of identity and unilateral shift with multiplicity one and \mathbb{H} is subnormal, or (ii) H_1 is a non-subnormal and there are $\alpha_j, \beta_j \in \mathbb{C}$ such that
\[H_j = \alpha_j H_1 + \beta_j I, \quad j = 2, \ldots, k. \]

(b) suppose that H_1 is cohyponormal, $\text{rank}[H_1^*, H_1] = 1$ and $\text{ran}[H_1^*, H_1] \subset \text{ran}[H_j^*, H_j]$, $j = 1, \ldots, k$. Then there are $\alpha_j, \beta_j \in \mathbb{C}$ such that (18) holds.

This theorem is an improvement of Theorem 1 in [18]. The proof of this theorem is closely related to the proof of Theorem 1 in [18]. In order to make the proof of this theorem readable, we have to copy some parts of the proof of Theorem 1 in [18].

Proof. Case (a): (1) First let us study the pair (H_1, H_2). There is a vector $e_1 \in \mathcal{H}$, $e_1 \neq 0$ such that
\[[H_1^*, H_1]x = (x, e_1)e_1, \quad x \in \mathcal{H}. \]
Therefore there exists a vector e_2 such that
\[[H_2^*, H_1]x = (x, e_2)e_1, \]

since $\text{ran}[H_2^*, H_1] \subset \text{ran}[H_1, H_1]$. Let \mathcal{H}_1 be the smallest subspace containing e_1 and reducing H_1. From (19) and (20) it is obvious that
\[\|e_1\|^2 H_2^* H_1 e_1 = (e_1, e_2) H_1^* e_1 + (H_2^* e_1, e_1) e_1 - (H_1^* e_1, e_2) e_1 \in \mathcal{H}_1. \]

Also we have that
\[H_2^* H_1^{*m} H_1^n e_1 = \sum_{j=0}^{n-1} H_1^{*m} H_1^{n-j-1} [H_2^*, H_1] H_1^j e_1 + H_1^{*m} H_1^n H_2^* e_1. \]

Therefore $H_2^* H_1^{*m} H_1^n e_1 \in \mathcal{H}_1$ for $m, n = 0, 1, 2, \ldots$. Thus \mathcal{H}_1 is invariant with respect to H_2^*.

(ii) According to the decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_i^{\perp}$, H_j may be written as

$$H_j = \begin{pmatrix} A_j & 0 \\ B_j & C_j \end{pmatrix}, \quad j = 1, 2,$$

where $A_j^* = H_j^* \mid _{\mathcal{H}_1}$, $B_1 = 0$ and C_1 is normal. Let e_2^1 be the projection of e_2 on \mathcal{H}_1. Let $e_2^2 = e_2 - e_2^1$. We have to prove that $e_2^2 = 0$. Suppose on contrary that $e_2^2 \neq 0$.

Lemma 7. If $e_2^2 \neq 0$, then \mathcal{H}_1 is the closure of the

$$\text{span}\{(zI - H_1)^{-1}e_1, \ z \in \rho(H_1)\}$$

and

$$(22) \quad ((zI - H_1)^{-1}e_1, (wI - H_1)^{-1}e_1) = \|e_1\|^2((w - \beta)(z - \beta)I - \|e_1\|^2)^{-1},$$

where $\beta \in \mathbb{C}$.

The proof of this lemma is in [18]. See the part of [18] from lemma 1 of p. 427 to line 13 of p. 429. Especially notice the line 5 of p. 429.

Thus up to a unitary equivalence, we may assume that $\mathcal{H}_1 = H^2(\mathbb{T})$,

$$(A_1f)(z) = (\alpha z + \beta)f(z) \quad \text{for } f \in H^2(\mathbb{T}),$$

and

$$(A_2f)(z) = M(z)f(z), \quad \text{for } f \in H^2(\mathbb{T})$$

where $M(\cdot) \in H^2(\mathbb{T})$, since $[A_1, A_2] = 0$.

Let \mathcal{H}_2 be closure of the set $\{B_2p(\cdot) + q(C_1^*)e_2^2 : p$ and q are polynomials $\}$. Follow the steps from (20) through (24) in [18], we have the following.

Lemma 8. If $e_2^2 \neq 0$, then \mathcal{H}_2 reduces C_1, and up to a unitary equivalence, we may assume that \mathcal{H}_2 is the Hilbert space of all Borel measurable function $f(\cdot)$ on \mathbb{T} satisfying

$$(f, f)_{\mathcal{H}_2} = \frac{1}{2\pi} \int |f(e^{i\theta})|^2 F(e^{i\theta})d\theta < +\infty$$

where $F(\cdot)$ is a bounded measurable function,

$$(B_2f)(e^{i\theta}) = f(e^{i\theta}), \quad f \in \mathcal{H}_1 = H^2(\mathbb{T}).$$

Thus, by (27) and (28) in [18], we have

$$([H_2^*, H_2]f, f) = ((A_2^*A_2 - A_2A_2^* + B_2^*B_2)f, f) = \|(I - P)Mf\|^2 + \|f\|_{\mathcal{H}_2}^2,$$

for $f \in \mathcal{H}_1$. If F is not zero almost everywhere, then $[H_2^*, H_2]$ cannot be compact, which contradicts the assumption of the theorem. Thus $e_2^2 = 0$. Then follow the step (vi) of the proof of Theorem 1 in [18] we conclude that $\mathcal{H}_1 = \mathcal{H}$ and H_1 is pure.
As shown in (35) and (37) of [18], we have

\[(H_2 - k_2 I)e_1 = (H_1 - k_1 I)e_2\]
\[\{(H_2 - k_2 I)x, e_1\}e_1 = \{(H_1 - k_1 I)x, e_1\}e_2\]

where \(k_j = (H_j e_1, e_1)\|e_1\|^{-1}, j = 1, 2.\)

Case 1. If \((H_1^* - \overline{k_1} I)e_1 = 0\), then define

\[T(z, w) = (\overline{w} I - H_1^*)^{-1}e_1, (\overline{w} I - H_1^*)^{-1}e_1)\]
\[= (\overline{w} - \overline{k_1})^{-1}(z - k_1)^{-1}\|e_1\|^2\]

By the commutator property

\[((zI - H_1)^{-1}e_1, (wI - H_1)^{-1}e_1) = T(z, w)(1 - T(z, w))^{-1}\]
\[= \|e_1\|^2((\overline{w} - \overline{k_1})(z - k_1) - \|e_1\|^2)^{-1}\]

Thus \(H_1\) is a linear combination of the identical operator and the unilateral shift with multiplicity one. In that case, it is easy to see that \(H\) is subnormal, since \(H\) is a \(k\)-tuple of commuting operators.

Case 2. If \((H_1^* - \overline{k_1} I)e_1 \neq 0\), then from (24), there is a \(\alpha \in \mathbb{C}\) such that \(\alpha^2 = \alpha e_1\). From (23), there is a \(\beta \in \mathbb{C}\) such that

\[H_2 e_1 = (\alpha H_1 + \beta I)e_1.\]

Follow the step (viii) of [18], we may prove that \(H_2 = \alpha H_1 + \beta I\). Case (a) is proved.

Case (b). In this case (19) and (20) become

\[(zI - H_1)^{-1}e_1, (wI - H_1)^{-1}e_1) = ((zI - H_1)^{-1}e_1, (wI - H_1)^{-1}e_1)\]
\[= ((zI - H_1)^{-1}e_1, (wI - H_1)^{-1}e_1)\]
\[= ((zI - H_1)^{-1}e_1, (wI - H_1)^{-1}e_1)\]

The left-hand sides of (14), (15), (16) of p. 428 in [18] have to be multiplied by \((-1)\). But Corollary 1 in [18] is still true. The formula (21) becomes

\[((zI - H_1)^{-1}e_1, (wI - H_1)^{-1}e_1) = \|e_1\|^2((\overline{w} - \overline{\beta})(z - \beta) + \|e_1\|^2)^{-1}.\]

It leads to a contradiction that \(\|(H_1 - \beta I)e_1\|^2 = -\|e_1\|^4\). Therefore \(e_2^2 = 0\). By (vi) in the proof of Theorem 1 in [18]. We may prove that \(\mathcal{H}_1 = \mathcal{H}\). The left-hand sides of (35) and (37) in [18] must be multiplied by \(-1\) in this case. If \(H_1^* e_1 = \overline{k_1} e_j\), then we have

\[((zI - H_1)^{-1}e_1, (wI - H_1)^{-1}e_1) = (zw - 1)^{-1},\]

if we change \(H_j\) to \(\alpha_j H_j + \beta_j\), so that \(k_1 = k_2 = 0\) and \(\|e_1\| = 1\). However (26) contradicts to (25). Thus \((H_1^* - \overline{k_1} I)e_1 \neq 0\) and there is a \(\alpha \in \mathbb{C}\) such that \(e_2 = \alpha e_1\). By (viii) of [18], we prove that \(H_2 = \alpha H_1 + \beta\). Theorem 3 is proved.
A k-tuple of operators $\mathcal{H} = (H_1, \ldots, H_k)$, $H_j \in \mathcal{L}(\mathcal{H})$ is said to be hyponormal (or jointly hyponormal [2]), if
\[
\sum_{i,j} ([H_i^*, H_j] x_i, x_j) \geq 0, \quad x_i \in \mathcal{H}.
\]

COROLLARY 1. Let $\mathcal{H} = (H_1, \ldots, H_k)$ be an irreducible k-tuple of commuting operators. Suppose that $\operatorname{rank}[H_1^*, H_1] = 1$, (H_1, H_j) is hyponormal and $[H_j^*, H_j]$ is compact for $j = 2, \ldots, k$. Then the conclusion (a) of Theorem 2 holds.

PROOF. From the hyponormality (27) of every pair (H_1, H_j) we have
\[
([H_2^*, H_1] x_2, x_1)^2 \leq ([H_1^*, H_1] x_1, x_1)([H_2^*, H_2] x_2, x_2).
\]
for $x_1, x_2 \in \mathcal{H}$. This implies that $\operatorname{ran} [H_2^*, H_1] \subset \operatorname{ran} [H_1^*, H_1]$ which returns to the case (a) of Theorem 2.

Part of this paper has been lectured at the Sum. Res. Conf. of Multivariable Operator Theory, Seattle, 1993. The author would like to thank the organizers for their invitation.

REFERENCES

DEPARTMENT OF MATHEMATICS, VANDERBILT UNIVERSITY, NASHVILLE, TN 37240
E-mail address: Xiad@ctrvax.Vanderbilt.Edu