Spectral Mapping of Hyponormal or Semi-Hyponormal Operators*

DAOXING XIA

Fudan University, Shanghai, China

Submitted by Ky Fan

Let \mathcal{H} be a separable complex Hilbert space, $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators in \mathcal{H}. An operator $T \in \mathcal{L}(\mathcal{H})$ is called hyponormal [8] if $T^*T - TT^* \succeq 0$, semi-hyponormal [13] if

$$(T^*T)^{1/2} - (TT^*)^{1/2} \succeq 0.$$

For $T \in \mathcal{L}(\mathcal{H})$, we write $|T| = (T^*T)^{1/2}$. In this paper, when we consider a semi-hyponormal operator T, we always assume that the operator U in the polar decomposition $T = U|T|$ is unitary, for the sake of simplicity.

Let E be a bounded closed set in the real line \mathbb{R}, and $M(E)$ be the class of all strictly monotone increasing continuous function on E. Clearly every function $\phi \in M(E)$ can be continued to be a topological mapping from \mathbb{R} onto itself, and we shall make such continuation when necessary. If $E_j, j = 1, 2,$ are two bounded closed sets in \mathbb{R} and $\phi_j \in M(E_j)$, then we define the mapping

$$\tau_{\phi_1, \phi_2}: x_1 + ix_2 \rightarrow \phi_1(x_1) + i\phi_2(x_2), \quad \text{for} \quad x_j \in E_j, \quad j = 1, 2,$$

from $E_1 \times E_2 = \{x_1 + ix_2 \mid x_j \in E_j\}$ to $\phi_1(E_1) \times \phi_2(E_2)$ in the complex plane as well as the mapping in $\mathcal{L}(\mathcal{H})$,

$$\tau_{\phi_1, \phi_2}: X_1 + iX_2 \rightarrow \phi_1(X_1) + i\phi_2(X_2),$$

for all self-adjoint $X_j \in \mathcal{L}(\mathcal{H}), j = 1, 2,$ with $\sigma(X_j) \subset E_j$, where $\sigma(A)$ is the spectrum of A.

If $X \in \mathcal{L}(\mathcal{H})$, we write $X_1 = (X + X^*)/2$ and $X_2 = (X - X^*)/2i$.

Let $\sigma_a(A)$ and $\sigma_r(A)$ be the approximate point spectrum and the residue spectrum of an operator A, respectively. Let $\sigma_{ja}(A)$ be the joint approximate

* This paper was written during the author's visit to the Department of Mathematics and the Algebra Institute, University of California, Santa Barbara.

* This paper was written during the author's visit to the Department of Mathematics and the Algebra Institute, University of California, Santa Barbara.
point spectrum of an operator $A = A_1 + iA_2$, i.e., the set of all such complex numbers $x_1 + ix_2$ for which there exists a sequence of unit vectors $\{f_n\} \subset \mathcal{H}$ satisfying

$$\lim_{n \to \infty} \|(A_j - x_j I)f_n\| = 0, \quad j = 1, 2.$$

It is well known [8] that if X is hyponormal then $\sigma_a(X) = \sigma_{ja}(X)$ and

$$\sigma_a(X) \subseteq \sigma(X_1) \times \sigma(X_2).$$

In this paper (Section 3), we shall consider the following problem. Under what condition of $E \in M(E_j)$ are the relations

$$\sigma_{ja}(\tau_{\phi_1, \phi_2}(X)) = \sigma_{ja}(\tau_{\phi_1, \phi_2}(X)), \quad (1)$$

$$\sigma_{ja}(\tau_{\phi_1, \phi_2}(X)) = \sigma_{ja}(\tau_{\phi_1, \phi_2}(X)), \quad (2)$$

$$\sigma_{ja}(\tau_{\phi_1, \phi_2}(X)) = \sigma_{ja}(\tau_{\phi_1, \phi_2}(X)), \quad (3)$$

and

$$\sigma_{ja}(\tau_{\phi_1, \phi_2}(X)) = \sigma_{ja}(\tau_{\phi_1, \phi_2}(X)). \quad (4)$$

true for every hyponormal operators $X = X_1 + iX_2 \in \mathcal{L}(\mathcal{H})$ with $\sigma(X_j) \subset E_j$.

We denote by $C_1 = \{z \mid |z| = 1\}$ the unit circle in the complex plane. If E is a closed subset in C_1, let $M_0(E)$ be the class of all orientation preserving topological mappings $\phi : E \to \phi(E) \subset C_1$. We write $C_2 = [0, \infty)$. If E is a bounded closed subset in C_2, then $M_0(E) = \{\phi \mid \phi \in M(E), \phi \geq 0 \text{ and } \phi(0) = 0\}$.

If $E_j \subset C_j, j = 1, 2$, are bounded closed sets and $\phi_j \in M_0(E_j)$, we define the mapping

$$\tau_{\phi_1, \phi_2}(e^{i\theta} \rho) = \phi_1(e^{i\theta})\phi_2(\rho), \quad e^{i\theta} \in E_1, \quad \rho \in E_2,$$

which will be extended to a topological mapping from the complex plane onto itself. If $X = U|X|$ is the polar decomposition of an operator $X \in \mathcal{L}(\mathcal{H})$, U is unitary, $\sigma(U) \subset E_1$ and $\sigma(|X|) \subset E_2$, then we define

$$\tau_{\phi_1, \phi_2}(X) = \phi_1(U)\phi_2(|X|).$$

If $A = U|A| \in \mathcal{L}(\mathcal{H})$ and U is unitary then we define the polar joint approximate point spectrum $\sigma_{ja}(A)$ as the set of all complex numbers $\rho e^{i\theta}, |e^{i\theta}| = 1, \rho > 0$, for which there exists a sequence of unit vectors $f_n \subset \mathcal{H}$ satisfying

$$\lim_{n \to \infty} \|(U - e^{i\theta} I)f_n\| = \lim_{n \to \infty} \|(|A| - \rho I)f_n\| = 0.$$
If $0 \in \sigma_s(A)$ then we also define that $0 \in \sigma_{pia}(A)$ for convenience. If A is a self-adjoint operator in $\mathcal{L}(\mathcal{H})$, we denote

$$m(A) = \inf_{\|f\| = 1} (Af, f) \quad \text{and} \quad M(A) = \inf_{\|f\| = 1} (Af, f).$$

If $X = U|X|$ is semi-hyponormal and U is unitary, we proved that [13]

$$\sigma_s(X) = \sigma_{pia}(X),$$

and

$$\sigma_s(X) \subset \{ \rho e^{i\theta} \mid e^{i\theta} \in \sigma(U), \rho \in \{ m(|X|), M(|X|) \} \},$$

and Li [4] proved that

$$\sigma_s(X) \subset \{ \rho e^{i\theta} \mid e^{i\theta} \in \sigma(U), \rho \in \sigma(|X|) \}$$

if $\sigma(U) \neq C_1$.

The second problem which we shall consider (in Section 4) is under what condition of $\phi \in M_0(E_j)$ with $E_j \subset C_j$ will (1)–(4) hold for every semi-hyponormal operator $X = U|X|$ with $\sigma(U) \subset E_j$, $\{ m(|X|), M(|X|) \} \subset E_2$ or $\sigma(|X|) \subset E_2$ when $\sigma(U) \neq C_1$.

The author and Li have considered these two problems in some simpler cases in the previous papers [5, 6] (cf. Section 2). For the convenience of the reader we shall give a brief account of the related results and preliminaries of the theory of hyponormal or semi-hyponormal operators in Section 2. By means of (3), we shall also consider the generalization of Putnam's inequality in Section 5.

2

First, we have to consider the singular integral models of the hyponormal or the semi-hyponormal operators.

Let \mathbb{R} be the real line R_1 or C_1, E be a closed bounded set in \mathbb{R}, \mathcal{B}_E be the σ-algebra of all Borel subsets in E, and m be the Lebesgue measure on (E, \mathcal{B}_E). When $M \subset C_1$,

$$dm(e^{i\theta}) = \frac{1}{2\pi} d\theta.$$

Let ν be a singular finite measure on (E, \mathcal{B}_E), which is concentrated in $F \in \mathcal{B}_E$ with $m(F) = 0$. We denote $\mu = m + \nu$, $\Omega = (E, \mathcal{B}_E, \mu)$. Let \mathcal{D} be an auxiliary complex separable Hilbert space. Let $L^2(\Omega, \mathcal{D})$ be the Hilbert space.
of all strongly measurable and square integrable \mathcal{D}-valued functions on Ω with inner product

$$(f, g) = \int_{E} (f(x), g(x))_{\mathcal{D}} d\mu(x).$$

For $f \in L^2(\Omega, \mathcal{D})$, we define $f(x) = 0$ for $x \in M - E$. In the following, we shall often use singular integral operators P_+. If $E \subset R_1$ and $f \in L^2(\Omega, \mathcal{D})$ then

$$(P_+ f)(x) = st - \lim_{\epsilon \to 0^+} \frac{1}{2\pi i} \int_{R_1} \frac{f(s) ds}{x - (s + i\epsilon)}, \quad x \in R_1,$$

and if $E \subset C_1, f \in L^2(\Omega, \mathcal{D})$, then

$$(P_+ f)(x) = st - \lim_{\epsilon \to 0^+} \frac{1}{2\pi i} \int_{C_1} \frac{f(s) ds}{s - x(1 - \epsilon)}, \quad x \in C_1.$$

Let $\mathcal{D}_1 \subset \cdots \subset \mathcal{D}_n \subset \cdots \subset \mathcal{D}$ be a sequence of subspaces and $\emptyset = F_0 \subset F_1 \subset \cdots \subset F_n \subset \cdots$ be a sequence of subsets in \mathcal{B}_E. We define the projection-valued function $P(\cdot)$ on E by

$$P(x) \mathcal{D} = \mathcal{D}_n, \quad \text{for} \ x \in F_n - F_{n-1},$$

and $P(x) = I$ for $x \in M - \bigcup_{n=0}^{\infty} F_n$. Let

$$\mathcal{H} = \{ f \mid f \in L^2(\Omega, \mathcal{D}), P(x)f(x) = f(x) \text{ for } x \in E \}$$

be a subspace of $L^2(\Omega, \mathcal{D})$, let $\alpha(\cdot)$ and $\beta(\cdot)$ be strongly measurable and uniformly bounded $\mathcal{D}(\mathcal{D})$ valued functions on Ω which satisfy the conditions

$$\alpha P = P\alpha = \alpha, \quad \beta P = P\beta = \beta, \quad \beta^* = \beta, \quad \alpha \geq 0,$$

and let $\alpha(x) = 0$ for $x \in F$. Then we construct the operator \tilde{T} in \mathcal{H} as follows:

$$(\tilde{T}f)(x) = x(\beta(x)f(x) + \alpha(x) P_+(af)), \quad x \in C_1, \quad (5)$$

if $E \subset C_1$, and

$$(\tilde{T}f)(x) = (x + i\beta(x))f(x) + \alpha(x) P_+(af), \quad x \in R_1, \quad (6)$$

if $E \subset R_1$.

Theorem 1. The operator \tilde{T} in \mathcal{H} is semi-hyponormal if $E \subset C_1$ and is hyponormal if $E \subset R_1$.
If \(T = U \|T\| \in \mathcal{L}(\mathcal{H}) \) is semi-hyponormal and \(U \) is unitary or \(T = T_1 + iT_2 \in \mathcal{L}(\mathcal{H}) \) is hyponormal and \(T_j \) is self-adjoint, then there is an operator \(\tilde{T} \) in a Hilbert space \(\mathcal{H} \) with \(E = \sigma(U) \) in the semi-hyponormal case of \(T = U \|T\| \) or with \(E = \sigma(T_j) \) in the hyponormal case \(T = T_1 + iT_2 \), respectively, and a unitary operator \(W: \mathcal{H} \to \mathcal{H} \) such that

\[
T = W^{-1} \tilde{T} W.
\]

The proof of this theorem, in the semi-hyponormal case can be found in [13] and in the hyponormal case in [3, 7, 11, 12]. But the hyponormal case can be reduced to the semi-hyponormal case by the transform

\[
T_1 + iT_2 \to [(T_1 + i\lambda)(T_1 - i\lambda)^{-1}] [T_2 - m(T_2)].
\]

Let \(B(E) \) be the set of all bounded complex Baire functions \(\phi \) on \(E \), and let \(K_\phi \) be the bounded operator

\[
(K_\phi f)(x) = P_+ (\phi) P_+ (\tilde{\phi} f), \quad f \in L^2(E, \mathfrak{B}_E, m),
\]

for \(\phi \in B(E), \ E \subset C_1, \) or \((K_\phi f)(x) = i(\phi(x) P_+ (f) - P_+ (\phi f)) \) for real \(\phi \in B(E), \ E \subset R_1 \). The operator \(K_\phi \) is obviously self-adjoint and

\[
(K_\phi f, f) = \frac{1}{(2\pi)^2} \int_E \int_E \frac{1 - \bar{\phi}(\xi) \phi(\eta)}{1 - e^{-i\xi \eta}} f(\xi) \overline{\phi(\eta)} d\xi d\eta,
\]

for \(E \subset C_1 \) and

\[
(K_\phi f, f) = \frac{1}{(2\pi)^2} \int_E \int_E \frac{\phi(x) - \phi(y)}{x - y} f(x) \overline{f(y)} dx dy,
\]

for \(E \subset R_1 \). Let \(B_+(E) = \{ \phi \mid \phi \in B(E), m(K_\phi) > 0 \} \).

The following lemmas will be used in Sections 3 and 4.

Lemma 1. If \(T = U \|T\| \in \mathcal{L}(\mathcal{H}) \) is semi-hyponormal, \(U \) is unitary and \(\phi \in B(\sigma(U)) \) then

\[
|T| - \phi(U) \|T\| \phi(U)^* \geq \tilde{m}(K_\phi)(|T| - U \|T\| U^*). \tag{9}
\]

If \(T = T_1 + iT_2 \) is hyponormal, \(T_j, \ j = 1, 2, \) are self-adjoint and \(\phi_j \in B(\sigma(T_j)), j = 1, 2, \) then

\[
i[\phi_1(T_1), T_2] \geq i \tilde{m}(K_\phi)[T_1, T_2],
\]

\[
i[T_1, \phi_2(T_2)] \geq im(K_\phi)[T_1, T_2],
\]

where \(|A, B| = AB - BA \). \(\tilde{m}(K_\phi) = \sup\{c \mid m(K_\phi - CK_j) \geq 0\} \).
Proof. By Theorem 1, we only consider the singular model and use the notation T and H instead of \tilde{T} and \tilde{H}, respectively. In the semi-hyponormal case it can be proved that

$$
\left(\|T\| - \phi(U) \|T\| \phi(U^*)f, f\right) = \frac{1}{(2\pi)^2} \int_E \int_E \frac{1 - \phi(e^{i\xi}) \phi(e^{i\eta})}{1 - e^{-i\xi}e^{i\eta}}
\times \left(\alpha(e^{i\xi})f(e^{i\xi}), \alpha(e^{i\eta})f(e^{i\eta})\right)_E d\xi d\eta
$$

and

$$
\left(\|T\| - U \|T\| U^*f, f\right) = \frac{1}{(2\pi)^2} \int_E \int_E \left(\alpha(e^{i\xi})f(e^{i\xi}), \alpha(e^{i\eta})f(e^{i\eta})\right)_E d\xi d\eta.
$$

Then (9) holds evidently, since $K_\omega \geq m(K_\omega)I$.

The first inequality of (10) can be proved similarly and the second can be proved by considering the hyponormal operator $-iT = T + i(\tilde{T})$.

If $E \subset \mathbb{R}$ and $\omega \in M(E)$, we define

$$
l_\omega = \sup_{x_1, x_2 \neq \omega} \frac{\phi(x_1) - \phi(x_2)}{x_1 - x_2}
$$

and

$$
m_\omega = \inf_{x_1, x_2 \neq \omega} \frac{\phi(x_1) - \phi(x_2)}{x_1 - x_2}.
$$

Let $\mathcal{L}(E) = \{\phi \mid \phi \in M(E), 0 < m_\phi \leq l_\phi < \infty\}$ and $\mathcal{L}_0(E) = M_0(E) \cap \mathcal{L}(E)$ for $E \subset [0, \infty)$.

Theorem 2 [5]. Let $X = X_1 + iX_2$ be hyponormal.

1. If $\phi_j \in M(\sigma(X_j))$, $j = 1, 2$, and $\tau_{\phi_1, \phi_2}(X)$ is hyponormal, then (1)–(4) hold.

2. If $\phi_j \in B_+^+(\sigma(X_j))$, $j = 1, 2$, then $\tau_{\phi_1, \phi_2}(X)$ is hyponormal and (1)–(4) hold.

3. If one of ϕ_j, $j = 1, 2$, is in $B_+^+(\sigma(X_j))$ and another is in $\mathcal{L}(\sigma(X_j))$, then (1)–(4) hold.

Theorem 3 [6]. Let $X = U |X|$ be semi-hyponormal and U unitary.

1. If $\phi \in M(\sigma(U))$, $\phi_2 \in M_0([m(|X|), M(|X|)])$ (or $\phi_2 \in M_0(\sigma(|X|))$ in the case of $\sigma(U) \neq C_1$) and $\tau_{\phi_1, \phi_2}(X)$ is semi-hyponormal then (1)–(4) hold.

2. If $\phi_1 \in B_+^+(\sigma(U))$ and $\phi_2 \in B_+^+(E)$, where $E = [m(|X|), M(|X|)]$ or $E = \sigma(|X|)$ in the case of $\sigma(U) \neq C_1$, then $\tau_{\phi_1, \phi_2}(X)$ is semi-hyponormal and (1)–(4) hold.
If $\phi_1 \in B_+(\sigma(U))$, $\phi_2 \in M_0([m(|X|), M(|X|)])$ and $t/\phi_2(t)$ is a monotonic increasing and concave function then (1)–(4) hold.

The following lemma is essentially given in [5], but we include a proof.

Lemma 2. Let R be a set in the complex plane, $T(t)$ be an operator-valued function of $t \in [0, 1]$ which is continuous with respect to the norm topology, and $\tau_t, t \in [0, 1]$, be a family of topological mappings from R to itself such that $\tau_t(z)$ is a continuous function of $t \in [0, 1]$, for every complex number $z \in R$. Suppose that τ_0 is the identity mapping. If

$$\sigma_a(T(t)) \cap R = \tau_t(\sigma_a(T(0)) \cap R), \quad \text{for } t \in [0, 1],$$

then

$$\sigma_a(T(t)) \cap R = \tau_t(\sigma_a(T(0)) \cap R), \quad \text{for } t \in [0, 1],$$

and hence

$$\sigma(T(t)) \cap R = \tau_t(\sigma(T(0)) \cap R), \quad \text{for } t \in [0, 1].$$

Proof. For every

$$z \in \sigma_a(T(0)) \cap R$$

we have to prove that the set

$$E_z = \{t \mid t \in [0, 1], \tau_t(z) \in \sigma_a(T(s)) \text{ for } 0 \leq s \leq t\}$$

is $[0, 1]$. It is obvious that $E_z = [0, t_0)$ or $[0, t_0]$ for certain $t_0 \in [0, 1]$. If $E_z = [0, t_0)$, then $\tau_t(z) \in \sigma_a(T(t_0))$. But $z \notin \sigma_a(T(0)) \cap R$, because of (14). Then

$$\tau_t(z) \notin \sigma_a(T(t_0)) \cap R$$

according to (11). Hence $\tau_t(z) \notin \sigma_a(T(t_0))$. Thus $\tau_t(z) \in \rho(T(t_0))$, where $\rho(A)$ is the resolvent set of A. By the continuity of τ_t and $T(t)$, there is a positive number δ such that

$$\tau_t(z) \in \rho(T(t)) \quad \text{for } |t - t_0| < \delta.$$

Hence $\tau_t(z) \notin \sigma_a(T(t))$ for $|t - t_0| < \delta$. Thus $(t_0 - \delta, t_0) \cap E_z = \emptyset$, contrary to $E_z = [0, t_0)$.

So we must have $E_z = [0, t_0]$. We have to prove $t_0 = 1$. Since $\tau_t \in \sigma_a(T(t_0))$, there is a number $\epsilon > 0$ such that

$$\|(T(t_0) - \tau_t(z))x\| \geq \epsilon \|x\|, \quad \text{for } x \in \mathcal{H}. \quad (15)$$
If \(t_0 < 1 \), by the continuity of \(T(t) \) and \(\tau_t \), there is is positive \(\delta \) with \(t_0 + \delta < 1 \) such that
\[
\| T(t) - T(t_0) \| < \varepsilon/6, \quad |\tau_t(z) - \tau_{t_0}(z)| < \varepsilon/6, \quad \text{for} \quad t \in [t_0, t_0 + \delta). \quad (16)
\]

From (15) and (16) we have
\[
\| (T(t) - \tau_t(z)I)x \| \geq \frac{3}{2} \| x \|, \quad \text{for} \quad x \in \mathcal{H} \quad \text{and} \quad t \in [t_0, t_0 + \delta). \quad (17)
\]

If the range of the operator \(T(t) - \tau_t(z)I \) is the whole space \(\mathcal{H} \), then \((T(t) - \tau_t(z)I)^{-1} \in \mathcal{L}(\mathcal{H}) \) and
\[
\| (T(t) - \tau_t(z)I)^{-1} \| \leq 3/2\varepsilon. \quad (18)
\]

From (18) and the first inequality of (16), we have \(\tau_{t_0}(z) \in \rho(T(t_0)) \), contrary to \(t_0 \in E_z \). Hence the range of \(T(t) - \tau_t(z)I \) must be a proper subspace of \(\mathcal{H} \). But from (17), we have
\[
\tau_t(z) \in \sigma_t(T(t)), \quad \text{for} \quad t \in [t_0, t_0 + \delta).
\]

Then \([t_0, t_0 + \delta) \subset E_z \). This is also a contradiction.

Thus we must have \(E_z = [0, 1] \), i.e.,
\[
\sigma_s(\sigma_t(T(0)) \cap R) \subset \sigma_t(T(s)) \cap R, \quad \text{for} \quad s \in [0, 1]. \quad (19)
\]

If instead of \(T(t) \) and \(\tau_t \), we consider the functions \(T(s(1-t)) \) and \(\tau_{s(1-t)} \tau_s^{-1} \), respectively, for \(t \in [0, 1] \), where \(s \) is a fixed number in \([0, 1]\), then we have
\[
\sigma_s(T(s)) \cap R \subset \sigma_s(\sigma_t(T(0)) \cap R), \quad \text{for} \quad s \in [0, 1]. \quad (20)
\]

From (19) and (20), we obtain (12). And (13) is a direct consequence of (11) and (12).

Lemma 3. Let (i) \(T = T_1 + iT_2 \in \mathcal{L}(\mathcal{H}) \), \(\phi_j \in M(R_j) \), \(j = 1, 2 \), \(t \in [0, 1] \), or (ii) \(T = UT \in \mathcal{L}(\mathcal{H}) \), \(U \) be unitary, \(\phi_j \in M_0([0, \infty)) \) and \(\phi_j \in M_0(C_1) \) for \(t \in [0, 1] \). Let \(\tau_t = \tau_{t_1}, \tau_{t_2} \) for which \(\tau_0 \) is identical mapping, \(\tau_t(z) \) is a continuous function of \(t \in [0, 1] \) for every fixed complex number \(z \),
\[
\sigma_{1a}(T) = \sigma_a(T), \quad \sigma_{ja}(T(t)) = \sigma_a(T(t)), \quad t \in [0, 1], \quad (21)
\]

in case (i) and
\[
\sigma_{p1a}(T) = \sigma_a(T), \quad \sigma_{pja}(T(t)) = \sigma_a(T(t)), \quad t \in [0, 1], \quad (23)
\]

in case (ii). Then (11)–(13) hold.
Proof. We shall consider case (i) only. By Lemma 2, it suffices to prove (11). By (21) and (22), (11) is equivalent to
\[\sigma_{j a}(T(t)) = \tau_i(\sigma_{j a}(T)), \quad t \in [0, 1]. \] (25)

If \(x = x_1 + x_2 t \in \sigma_{j a}(T) \), then by definition, there is a sequence of unit vectors \(\{f_n\} \) in \(\mathbb{H} \) such that
\[\lim_{n \to \infty} \|(T_j - x_j I)f_n\| = 0, \quad j = 1, 2. \] (26)

Since \(\phi_{j t}(s) \) is a continuous function of \(s \), for \(\varepsilon > 0 \), there is a polynomial \(P_{j t}(s) \) such that
\[\|\phi_{j t}(T_j) - P_{j t}(T_j)\| < \varepsilon, \quad \|\phi_{j t}(x_j) - P_{j t}(x_j)\| < \varepsilon \] (27)
for \(j = 1, 2 \) and \(t \in [0, 1] \). From (26) it is obvious that
\[\lim_{n \to \infty} \|(P_{j t}(T_j) - P_{j t}(x_j I)f_n\| = 0, \quad j = 1, 2, \quad t \in [0, 1]. \] (28)

Then \(\lim_{n \to \infty} \|(\phi_{j t}(T_j) - \phi_{j t}(x_j I)f_n\| \leq 2\varepsilon \) follows from (27) and (28). Hence
\[\tau_i(x) \in \sigma_{j a}(T(t)). \]

Thus
\[\sigma_{j a}(T(t)) \supset \tau_i(\sigma_{j a}(T)). \] (29)

Similarly, we can prove that \(\sigma_{j a}(T(t)) \subset \tau_i(\sigma_{j a}(T)) \). Thus (25) holds and then (11)–(13) hold.

3

First we consider the case of hyponormal operators. Let \(E \) be a bounded closed set in \(R_1, \mathcal{L}_m(E) = \{\phi \mid \phi \in M(E), m_\phi > 0\} \). For every \(\phi \in \mathcal{L}_m(E) \), we define
\[N(\phi) = \inf_{g \in B, \phi \in M(E)} \frac{|\min(0, \tilde{m}(K_{g^{-1}}))|}{m_{g^{-1}}}, \] (30)
where \(g^{-1} \) is the inverse mapping of \(g \).

Theorem 4. Let \(X = X_1 + iX_2 \) be a hyponormal operator. If \(\phi_j \in \mathcal{L}_m(\sigma(X_j)), j = 1, 2, \) and
\[N(\phi_1) N(\phi_2) < 1, \] (31)
then (1)-(4) hold and

\[\| (\tau_{\phi_1, \phi_2}(x) - \tau_{\phi_3, \phi_2}(x))^{-1} \| \leq M(\phi_1, \phi_2) \| (X - xI)^{-1} \| \]

(32)

for every \(x \in \rho(X) \), where \(M(\phi_1, \phi_2) \) is a constant which depends only on \(\phi_1, \phi_2 \).

Proof. We prove the theorem in four steps.

(i) Let \(\mu_\phi = \min(0, \tilde{m}(K_\phi)) \). From (31), there are functions \(g_j \in B_+(\sigma(X_j)) \cap M(\sigma(X_j)) \) such that

\[\prod_{j=1}^{2} \mu_{\phi_j g_j^{-1}} < \prod_{j=1}^{2} m_{\phi_j g_j^{-1}} \]

(33)

Let \(k_j, j = 1, 2, \) be positive numbers, and \(\psi_j(s) = \phi_j(g_j^{-1}(k_j s)), j = 1, 2 \). Then

\[\mu_{\phi_j} = k_j \mu_{\phi_j g_j^{-1}} \quad \text{and} \quad m_{\phi_j} = k_j m_{\phi_j g_j^{-1}}. \]

(34)

We take \(k_j \) such that

\[(\mu_{\phi_1} + \mu_{\phi_2})/2 = (\mu_{\phi_1}, \mu_{\phi_2})^{1/2}. \]

(35)

From (33)-(35) we have \((\mu_{\phi_1} + \mu_{\phi_2})/2 < (m_{\phi_1} m_{\phi_2})^{1/2} \); so there is a positive number \(\delta < m_{\phi_j}, j = 1, 2, \) such that

\[\delta + (\mu_{\phi_1} + \mu_{\phi_2})/2 - (m_{\phi_1} - \delta)^{1/2}(m_{\phi_2} - \delta)^{1/2}. \]

(36)

(ii) Let \(h_j = g_j/k_j, x_j \) be real numbers, \(x = x_1 + ix_2, Y_j = h_j(X_j), y_j = h_j(x_j), T_j = Y_j - y_j I, S_j = \psi_j(y_j), s_j = \psi_j(y_j), R_j = S_j - s_j I, Y = Y_1 + iY_2, \)

\(T = T_1 + iT_2, R = R_1 + iR_2 \) and \(S = S_1 + iS_2 \). We have to prove

\[\mathcal{R}(RF, T\overline{F}) \geq \delta \| F \|^2, \quad \text{for } f \in \mathcal{H}. \]

(37)

By Theorem 2, case (2), \(Y = \tau_{h_1, h_2}(Y) \) is hyponormal. Since \(S = \tau_{\phi_1, \phi_2}(Y) \), from (10), we obtain

\[i[S_1, Y_2] \geq \mu_{\phi_1}[Y_1, Y_2], \quad i[Y_1, S_2] \geq \mu_{\phi_2}[Y_1, Y_2]. \]

But it is easy to verify that

\[[R_1, T_2] = [S_1, Y_2], \quad [R_2, T_1] = [S_2, Y_1], \quad [Y_1, Y_2] = [T_1, T_2]. \]

Thus

\[i[R_1, T_2] \geq \mu_{\phi_1}[T_1, T_2], \quad -i[R_2, T_1] \geq \mu_{\phi_1}[T_1, T_2]. \]

(38)
On the other hand, by the spectral decomposition of the self-adjoint operators \(Y_j \), we can easily prove that
\[R_j T_j = T_j R_j \geq m_{\phi_j} T_j^2, \quad j = 1, 2. \]

It is obvious that
\[
(m_{\phi_1} - \delta) T_1^2 + (m_{\phi_2} - \delta) T_2^2 - i(m_{\phi_1} - \delta)^{1/2}(m_{\phi_2} - \delta)^{1/2}[T_1, T_2] = \left[(m_{\phi_1} - \delta)^{1/2} T_1 + i(m_{\phi_2} - \delta)^{1/2} T_2 \right] \times \left[(m_{\phi_1} - \delta)^{1/2} T_1 - i(m_{\phi_2} - \delta)^{1/2} T_2 \right] \geq 0. \tag{39}
\]

From (36), (38) and (39) we have
\[T_1 R_1 + T_2 R_2 + i[R_1, T_1]/2 - i[R_2, T_1]/2 \geq \delta T^* T, \]
which is just (37).

(iii) If \(x \in \rho(X) \), then \(\tau_{h_1, h_2}(x) \in \rho(\tau_{h_1, h_2}(X)) \) by Theorem 2, case (2). Since
\[T = \tau_{h_1, h_2}(X) - \tau_{h_1, h_2}(x)I \]
and \(T^{-1} \in \mathcal{L}(\mathcal{H}) \), (37) becomes \(\mathcal{R}(RT^{-1}f, f) \geq \delta \| f \|^2 \) for \(f \in \mathcal{H} \). By Theorem 4.1 of [2], \(R^{-1} \in \mathcal{L}(\mathcal{H}) \) and
\[\| R^{-1} \| \leq \frac{1}{\delta} \| T^{-1} \|. \tag{40} \]

Let \(y = y_1 + iy_2 = \tau_{h_1, h_2}(x) \). Since \(T \) is hyponormal,
\[\| T^{-1} \| = \| (Y - yI)_{-1} \| = \sup_{\lambda \in \sigma(Y)} |(\lambda - y)^{-1}| = \sup_{\lambda \in \sigma(Y)} |(\tau_{h_1, h_2}(\lambda) - \tau_{h_1, h_2}(x))^{-1}| \leq \text{Max} \left(\frac{1}{m_{h_1}}, \frac{1}{m_{h_2}} \right) \| (X - xI)^{-1} \|. \tag{41} \]

However, \(R = \tau_{\phi_1, \phi_2}(Y) - \tau_{\phi_1, \phi_2}(x) = \tau_{\phi_1, \phi_2}(X) - \tau_{\phi_1, \phi_2}(x) \); (40) and (41) imply (32).

We have to prove that
\[\phi_{J_0}(\tau_{\phi_1, \phi_2}(X)) = \sigma_{\alpha}(\tau_{\phi_1, \phi_2}(X)). \tag{42} \]

Let \(\tau_{\phi_1, \phi_2}(x) \in \sigma_{\alpha}(\tau_{\phi_1, \phi_2}(X)) \), \(\{ f_n \} \) be a sequence of unit vectors in \(\mathcal{H} \) such that
\[\| R f_n \| = \| (\tau_{\phi_1, \phi_2}(X) - \tau_{\phi_1, \phi_2}(x)I) f_n \| \to 0. \]
Then, from (37) we have $\|T'_n\| \to 0$. But T is hyponormal,

$$\|(Y_j - y_j)T_n\| \to 0.$$

By the same method as that used in Lemma 3, we have

$$\|\phi_j(X_j) - \phi_j(x_j)\|_f = \|\psi_j(Y_j) - \psi_j(y_j)\|_f \to 0;$$

thus $\tau_{\psi_{1,0},\phi_2}(x) \in \sigma_{\lambda}(\tau_{\phi_{1,0},\phi_2}(X))$ and therefore (42).

(iv) We consider ϕ_j as topological mapping in R, and define

$$\phi_j(s) = s\phi_j(s) + (1-t)s, \quad j = 1, 2, t \in [0, 1].$$

It is obvious that

$$\mu_{\phi_j(x)} \leq \mu_{\phi_j(x)}^{-1}, m_{\phi_j(x)} \geq t m_{\phi_j(x)}^{-1}, \quad t \in [0, 1].$$

Thus $N(\phi_j) \leq N(\phi_j)$, for $t \in [0, 1]$, and (42) can be generalized to

$$\sigma_{\lambda}(\tau_{\phi_{1,0},\phi_2}(X)) = \sigma_{\lambda}(\tau_{\phi_{1,0},\phi_2}(X)).$$ (43)

Then (1)-(4) follow from Lemma 3 and (43).

Theorem 5. If $X = X_1 + iX_2$ is hyponormal, ϕ_j, $j = 1, 2$, are bounded real Baire functions on $\sigma(X_j)$, $j = 1, 2$, and

$$m(\phi_1, \phi_2) = \sup_{\phi_j \in \sigma(X_j)} \frac{\phi(j) - \phi(0)}{s_1 - s_2} < \infty,$$

then

$$\|\tau_{\phi_1,\phi_2}(X) - \tau_{\phi_1,\phi_2}(x)I^{-1}\| \geq m(\phi_1, \phi_2) \|X - xI^{-1}\|$$ (44)

for every $x \in \rho(X) \cap \tau_{\phi_1,\phi_2}(\rho(\tau_{\phi_1,\phi_2}(X)))$, where

$$m(\phi_1, \phi_2) = (\sqrt{2} \max(t_{\phi_1}, t_{\phi_2}))^{-1}.$$

Proof. It is obvious that

$$\|\tau_{\phi_1,\phi_2}(X) - \tau_{\phi_1,\phi_2}(x)I\| \leq 2 \sum_{j=1}^{2} \|\phi_j(x_j) - \phi_j(x)I\| \leq 2 \sum_{j=1}^{2} i_{\phi_j} \|X_j - x_jI\| \leq m(\phi_1, \phi_2)^{-2} \sum_{j=1}^{2} \|X_j - x_jI\|^2.$$ (45)
But it is well known that if \(A = A_1 + iA_2 \) is hyponormal then
\[
A^*A \geq A_1^2 + A_2^2.
\]
Thus \(\|(X - xI)f\|^2 \geq \sum_{j=1}^n \|(X_j - x_j I)f\|^2 \). Combining this inequality and (45), we obtain (44).

Corollary 1. Under the hypotheses of Theorems 4 and 5, let \(T = \tau_{\phi_1, \phi_2}(X) \). Then there are two finite positive constants \(M' \) and \(m' \) depending on \(\phi_1 \) and \(\phi_2 \) such that
\[
m' \inf_{\lambda \in \sigma(T)} \frac{1}{|\lambda - z|} \leq \|(T - zI)^{-1}\| \leq M' \inf_{\lambda \in \sigma(T)} \frac{1}{|\lambda - z|},
\]
for \(z \in (T) \).

Proof. Let \(z = \tau_{\phi_1, \phi_2}(x) \). Then
\[
\inf_{\lambda \in \sigma(T)} |\lambda - z| = \inf_{\lambda \in \sigma(X)} |\tau_{\phi_1, \phi_2}(\lambda) - \tau_{\phi_1, \phi_2}(x)|
\]
\[
= \inf_{\lambda_1 + i\lambda_2 \in \sigma(X)} \sqrt{\sum_{j=1}^2 (\phi_j(\lambda_j) - \phi_j(x_j))^2}
\]
But since \(0 < m_{\phi_j} \leq t_{\phi_j} < \infty \), we have
\[
\min(m_{\phi_1}, m_{\phi_2}) \inf_{\lambda \in \sigma(X)} |\lambda - x| \leq \inf_{\lambda \in \sigma(T)} |\lambda - z| \leq \max(t_{\phi_1}, t_{\phi_2}) \inf_{\lambda \in \sigma(X)} |\lambda - x|.
\]
It is obvious that (32), (44) and (47) imply (46).

Theorem 6. Let \(X = X_1 + iX_2 \) be hyponormal operator. If (i) \(\phi_1 \in M(\sigma(X_1)) \), \(\phi_2 \in B_+(\sigma(X_2)) \) or (ii) \(\phi_1 \in B_+(\sigma(X_1)) \), \(\phi_2 \in M(\sigma(X_2)) \) then (1)–(4) hold.

Proof. We consider case (i) only. Let \(\phi_0(s) \equiv s \). We notice that
\[
\tau_{\phi_1, \phi_2} = \tau_{\phi_1, \phi_0} \tau_{\phi_0, \phi_2}
\]
and the mapping \(\tau_{\phi_0, \phi_2} \) satisfies the condition of Theorem 2, case (2). Thus we can suppose that \(\phi_2 = \phi_0 \).

If \(\tilde{m}(K_{\phi_1}) \geq 0 \), then \(\phi_1 \in B_+(\sigma(X_1)) \), so we are reduced to Theorem 2, case (2). Let us now suppose that \(\tilde{m}(K_{\phi_1}) < 0 \). Let
\[
k = (-2\tilde{m}(K_{\phi_1}))^{-1},
\]
$X'_1 = X_1/k$, and $x'_i = x_i/k$. By Lemma 1, we have

$$i[\phi(X_1), X_2] \geq -i[X'_1, X_2]/2.$$

Let $R = \tau_{a_0}(X) - \tau_{a_0}(x)I, T = X'_1 + iX_2 - (x'_1 + ix_2)I$. We have

$$\frac{1}{2}(R^*T + T^*R) = (X'_1 - x'_1I)(\phi_1(x_1)I)$$

$$+ (X_2 - ix_2I)^2 + \frac{i}{2} [\phi_1(x_1) + X_1, X_2] \geq (X_2 - ix_2I)^2,$$

i.e.,

$$\mathcal{A}(\mathcal{A}(Rf, Tf)) \geq \|(X_2 - ix_2I)f\|^2. \quad (48)$$

If $\tau_{a_0}(x) \in \sigma_a(\tau_{a_0}(x)), \text{ then there is a sequence of unit vectors } \{f_n\} \text{ such that } \|Rf_n\| \to 0. \text{ From (48), we have }$$

$$\|(X_2 - ix_2I)f_n\| \to 0$$

immediately, and hence $\|(\phi_1(x_1) - i\phi_1(x_1))f_n\| \to 0$. Thus

$$\sigma_a(\tau_{a_0}(x)) \subset \sigma_{a_0}(\tau_{a_0}(x)).$$

Then by the same method as that used in Theorem 4, we can prove (1)–(4).

Theorem 6 is more general than case (3) in Theorem 2.

4

Now we consider the case of semi-hyponormal operators. Let $\Omega_0 = (C_1, B_{C_1}, m), E$ be a closed subset in C_1, and

$$L^2(E) = \{f \mid f \in L^2(\Omega_0) \text{ and } f(z) = 0 \text{ for } z \in C_1 - E\}$$

be the subspace of Hilbert space $L^2(\Omega_0)$. Let $\phi \in M_0(E)$. If there is a finite non-negative number a such that

$$|(P_+(\phi g), g) + a(\phi g, g)| \leq a\|g\|^2 + \|P_+(g)\|^2, \quad g \in L^2(E), \quad (49)$$

then we define δ_ϕ as the minimum of $a(1 + a)^{-1}$, when a varies over all non-negative numbers satisfying (49).

If $X = U|X|$ is semi-hyponormal and U is unitary, then there exist the polar symbols [13]

$$|X|_\pm = st - \lim_{t \to \pm \infty} U^{-n}|X|U^n.$$
It can be proved that if $X^{-1} \in \mathcal{L}(\mathcal{H})$ then $|X|^{-1/2} \in \mathcal{L}(\mathcal{H})$ and

$$m(|X|^{-1/2} |X|^{-1/2}) \geq (\|X\| \|X^{-1}\|)^{-1}.$$

Let CA be the class of all functions f analytic in $|z| < 1$ and continuous in $|z| \leq 1$. Let

$$\|\phi\| = \sup_{z \in C_1} |\phi(z)|$$

for any bounded function C_1.

Theorem 7. Let $X = U |X|$ be semi-hyponormal, where U is unitary. If $\phi_1 \in M_0(\sigma(U))$, $t/\phi_2(t)$ is a monotonic increasing function,

$$\delta_{\phi_1} \leq m(|X|^{-1/2} |X|^{-1/2})$$ \hspace{1cm} (50)

or

$$\inf_{f \in CA} \| (\phi_1 - W)^{-2} (k \phi_1 W^{-1} + k^{-1} W/\phi_1 - f) \| \leq 1$$ \hspace{1cm} (51)

for all $|W| = 1$, where $k = (m(|X|^{-1/2} |X|^{-1/2}))^{1/2}$; and $\phi_2 \in M_0(E)(E = [m(|X|)], M(|X|))$ or $\sigma(|X|)$ when $\sigma(U) \neq C_1$ then (1) and (4) hold.

If furthermore there is a family $\phi_1(z) \in M_0(\sigma(U))$, $t \in [0, 1]$, such that $\phi_1(t)$ is a continuous function of t for every fixed $z \in C_1$ and ϕ_1 satisfies (50) or (51) (with $\phi_1 = \phi_1$) for all $t \in [0, 1]$, $\phi_{10}(z) \equiv z$ and $\phi_{11} = \phi_1$, then (2)–(3) also hold.

Proof: (i) In the first step, we have to prove that (51) implies (50). If $k = a^{1/2}(1 + a)^{-1/2}$, $g_+ = P_+(g)$, and $g_- = g - g_+$ then (49) is equivalent to

$$\inf_{|W| = 1} \left\{ k^{-1} \| (\phi_1 - W) g_+ \|^2 + k \| (\phi_1 - W) g_- \|^2
ight.$$

$$- 2 \Re(W(k(\bar{\phi}_1 g_+ + g_-) + k^{-1}(\bar{\phi}_1 g_+ + g_-))) \right\} \geq 0.$$ \hspace{1cm} (52)

We construct the analytic function

$$q(z) = \exp \left\{ \frac{1}{\pi} \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \ln |\phi_1(e^{i\theta}) - W| \, d\theta \right\}.$$ \hspace{1cm}

Then

$$|q(z)| = |\phi_1(z) - W|^2,$$ \hspace{1cm} (53)
Put \(h_0(z) = q(z) g_-(\bar{z}^{-1})z^{-1}, h_1(z) = q(z) g_+(z) \). We can prove that (52) is equivalent to

\[
\inf_{|W|=1} \left\{ k \| h_0 \|^2 + k^{-1} \| h_1 \|^2 \right\} - 2 \mathcal{R} \left(\frac{1}{2\pi i} \int_{|z|=1} q(z)^{-1} \psi(z) h_0(z) h_1(z) \, dz \right) \geq 0, \quad (54)
\]

where \(\psi(z) = k \phi_1(z) W^{-1} + k^{-1} W \phi_1(z)^{-1} \). By virtue of (53), (51) implies (54) and hence (50) also.

(ii) We have to prove that

\[
\mathcal{R}(\|X| - W|X| \phi_1(U^*)) f, f \geq 0 \quad (55)
\]

for \(f \in \mathcal{H} \) and \(|W| = 1 \). Put \(a = \delta_{\phi_1} (1 - \delta_{\phi_1})^{-1} \). We consider the singular integral model in Theorem 1. From (49), we have

\[
\mathcal{R} \{ (P_+ (1 - W \phi_1(\cdot)) \alpha(\cdot) f(\cdot), \alpha(\cdot) f(\cdot)) \}
+ a(1 - W \phi_1(\cdot)) \alpha(\cdot) f(\cdot), \alpha(\cdot) f(\cdot)) \} \geq 0.
\]

Thus

\[
\mathcal{R}(\|T| - W|T| \phi_1(U^*)) f, f
\geq \mathcal{R}[\beta(\cdot)(1 - W \phi_1(\cdot)) f(\cdot), f(\cdot)]
- a((1 - W \phi_1(\cdot)) \alpha(\cdot) f(\cdot), \alpha(\cdot) f(\cdot))]. \quad (56)
\]

Let \(g(z) = (\mathcal{R}(1 - W \phi(z)))^{1/2} f(z) \). The right-hand side of inequality (56) is greater than or equal to

\[
((X_-, g, g) - a((X_+ - X_-) g, g)) = (1 + a) ((X_-, g, g) - \delta_{\phi_1}(X_+, g, g)) \geq 0,
\]

where \(X_+ g = (\beta + a^* a) g \) and \(X_- g = \beta g \). Thus (55) is proved.

(iii) Let \(T = \phi_1(U) X \) and \(\mathcal{U} = \phi_1(e^{i\theta}) \rho \). It is obvious that

\[
\| (T - \mathcal{U}) f \|^2 = \| (X - \rho I) f \|^2 + 2 \rho \mathcal{R}(\|X - \phi(e^{i\theta}) X \phi(U^*) f, f). \quad (57)
\]

Hence

\[
\| (T - \mathcal{U}) f \| \geq \| (X - \rho I) f \|, \quad (58)
\]

from (55) and (57).
Let $|X| = \int_{[m,M]} s \, dQ_s$ be the spectral decomposition of $|X|$, where $0 < m \leq M < \infty$. From (58), we obtain that

$$\|(\tau_{\phi_1,\phi_2}(X) - \tau_{\phi_1,\phi_2}(pe^{i\theta}I))f\| = \|((\phi_1(U)(\rho\phi_2(|X|)/\phi_2(\rho) - |X|)f + (T - \mathcal{H}I)f\| \phi_2(\rho)/\rho$$

$$\geq \{\|(\phi_2(|X|)/\phi_2(\rho) - |X|)f\|\} \phi_2(\rho)/\rho$$

$$\geq C \int_{[m,M]} \mathcal{H}(s, \rho) d(Q_s,f,f)/\|f\|,$$ (59)

where C is a positive constant depending on ρ and

$$\mathcal{H}(s, \rho) = \phi_2(s)/\phi_2(\rho)(1 - 2s/\rho + \phi_2(s)/\phi_2(\rho)).$$

We notice that, for every $\delta > 0$, there is a positive ε such that

$$\inf_{|s - \rho| > \delta} \mathcal{H}(s, \rho) > \varepsilon. \quad (60)$$

If $\|f\| = 1$ then (59) and (60) imply

$$\|(|X| - \rho I)f\|^2 \leq \delta^2 \|(\tau_{\phi_1,\phi_2}(X) - \tau_{\phi_1,\phi_2}(pe^{i\theta}I))f\|/(Ce) + \delta. \quad (61)$$

(iv) If $\tau_{\phi_1,\phi_2}(pe^{i\theta}) \in \sigma_p(\tau_{\phi_1,\phi_2}(X))$ and $\rho \neq 0$, $\{f_n\}$ is the sequence of unit vectors in \mathcal{H} such that

$$\|(\tau_{\phi_1,\phi_2}(X) - \tau_{\phi_1,\phi_2}(pe^{i\theta}I))f_n\| \to 0. \quad (62)$$

Then by (61), we have $\lim_{n \to \infty} \|(|X| - \rho I)f_n\| \leq \delta$ for arbitrary $\delta > 0$. Thus

$$\|(|X| - \rho I)f_n\| \to 0. \quad (63)$$

From (62) and (63) we can prove $\tau_{\phi_1,\phi_2}(pe^{i\theta}) \in \sigma_p(e(\tau_{\phi_1,\phi_2}(X)))$. Thus (1) and (4) hold.

The proof of the remaining part of Theorem 7 can be performed by a method similar to that used in Theorem 4.

Theorem 7 is a generalization of Theorem 3, case (3).

Example. Let a_j, $j = 0, 1, 2, \ldots, n$, and b_j, $j = 1, 2, \ldots, n$, be the points in the unit circle. If $r = \max_j(|a_j|, |b_j|)$ is sufficiently small, then

$$\phi_1(z) = e^{i\lambda} \prod_{j=0}^{n} \frac{z - a_j}{1 - \bar{a}_j z} \prod_{j=1}^{n} \frac{1 - b_j z}{z - b_j}$$

(λ is a real constant) satisfies the hypothesis of Theorem 7.
It is well known that if $X = X_1 + iX_2 \in \mathcal{L}(\mathscr{H})$ is self-adjoint, then Putnam's inequality \[8,9\] holds.

Thus if (3) holds for $T = T_1 + iT_2 = \tau_{\psi_1, \psi_2}(X)$, then we denote ϕ_j^{-1} by ψ_j and we have

$$
\| [\psi_1(T_1), \psi_2(T_2)] \| \leq \frac{1}{2\pi} \int_{\sigma(T)} d\psi_1(x_1) d\psi_2(x_2),
$$

from (64). This generalizes Putnam's inequality (64).

Corollary 2. Let $T = T_1 + iT_2 \in \mathcal{L}(\mathscr{H})$, $T_j, j = 1, 2$, be self-adjoint. If $\psi_j \in M(\sigma(T_j)), j = 1, 2$, such that

and (i) $\psi_j^{-1} \in L^m(\sigma(\psi_j(T_j))), j = 1, 2$, $N(\psi_1^{-1})N(\psi_2^{-1}) < 1$ or (ii) one of $\psi_j^{-1} \in B_+(\sigma(\psi(T_j)))$, then (65) holds. If, furthermore, the planar Lebesgue measure of $\sigma(T)$ is zero, then T is normal.

In the previous papers the author \[13\] and Li \[4,6\] obtained an inequality of Putnam's type for the semi-hyponormal operators.

Theorem 8. If $X = U |X|$ is semi-hyponormal, then

$$
\| |X| - U |X| U^* \| \leq \frac{1}{\pi} \int_{\rho e^{i\theta} \in \sigma(X)} dp d\theta.
$$

Similarly, we can obtain a generalization of (66) as follows.

Corollary 3. Let $T = U |T| \in \mathcal{L}(\mathscr{H})$, where U is unitary. Suppose $\psi_1 \in M_0(\sigma(U)), \psi_2 \in M_0([m(|T|), M(|T|)])$ and

$$
\psi_2(|T|) - \psi_1(U) \psi_2(|T|) \psi_1(U)^* \geq 0.
$$

If

$$
\rho \geq m(|\psi_2(|T|)|)^{-1/2} |\psi_2(|T|)| - |\psi_2(|T|)|^{-1/2})
$$

(67)
or
\[\inf_{f \in C^1(A)} \|(\psi_1^{-1} - W)^{-1}(k\psi_1^{-1}W - 1) + k^{-1}W\psi_1^{-1} - f\| \leq 1 \]
for all \(|W| = 1 \), where \(k \) is the square root of the right-hand side of (67), then
\[\|\psi_2(T) - \psi_1(U)\psi_2(T)\psi_1(U)^*\| \leq \frac{1}{\pi} \int_{\rho \in \sigma(T)} d\psi_1(e^{i\theta}) d\psi_2(\rho). \]

If furthermore the planar Lebesgue measure of \(\sigma(T) \) is zero, then \(T \) is normal.

ACKNOWLEDGMENTS

The author wishes to thank Professor Ky Fan and Professor John Ernest for their useful discussions and kind hospitality.

REFERENCES